

JDBC Adapter Guide

 Windchill 8.0

June 2005

Copyright © 2005 Parametric Technology Corporation. All Rights Reserved.
User and training documentation from Parametric Technology Corporation (PTC) is subject to the copyright
laws of the United States and other countries and is provided under a license agreement that restricts
copying, disclosure, and use of such documentation. PTC hereby grants to the licensed user the right to
make copies in printed form of this documentation if provided on software media, but only for
internal/personal use and in accordance with the license agreement under which the applicable software is
licensed. Any copy made shall include the PTC copyright notice and any other proprietary notice provided
by PTC. This documentation may not be disclosed, transferred, modified, or reduced to any form, including
electronic media, or transmitted or made publicly available by any means without the prior written consent
of PTC and no authorization is granted to make copies for such purposes.
Information described herein is furnished for general information only, is subject to change without notice,
and should not be construed as a warranty or commitment by PTC. PTC assumes no responsibility or
liability for any errors or inaccuracies that may appear in this document.
The software described in this document is provided under written license agreement, contains valuable
trade secrets and proprietary information, and is protected by the copyright laws of the United States and
other countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or
used in any manner not provided for in the software licenses agreement except with written prior approval
from PTC.

UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL
DAMAGES AND CRIMINAL PROSECUTION.

Registered Trademarks of Parametric Technology Corporation or a Subsidiary
Advanced Surface Design, Behavioral Modeling, CADDS, Computervision, CounterPart,
Create Collaborate Control, EPD, EPD.Connect, Expert Machinist, Flexible Engineering, GRANITE,
HARNESSDESIGN, Info*Engine, InPart, MECHANICA, Optegra, Parametric Technology,
Parametric Technology Corporation, PartSpeak, PHOTORENDER, Pro/DESKTOP, Pro/E, Pro/ENGINEER,
Pro/HELP, Pro/INTRALINK, Pro/MECHANICA, Pro/TOOLKIT, Product First,
Product Development Means Business, Product Makes the Company, PTC, the PTC logo, PT/Products,
Shaping Innovation, The Way to Product First, and Windchill.

Trademarks of Parametric Technology Corporation or a Subsidiary
3DPAINT, Associative Topology Bus, AutobuildZ, CDRS, CV, CVact, CVaec, CVdesign, CV-DORS, CVMAC,
CVNC, CVToolmaker, EDAcompare, EDAconduit, DataDoctor, DesignSuite, DIMENSION III,
Distributed Services Manager, DIVISION, e/ENGINEER, eNC Explorer, Expert Framework,
Expert MoldBase, Expert Toolmaker, Harmony, InterComm, InterComm Expert, InterComm EDAcompare,
InterComm EDAconduit, ISSM, KDiP, Knowledge Discipline in Practice, Knowledge System Driver,
ModelCHECK, MoldShop, NC Builder, Pro/ANIMATE, Pro/ASSEMBLY, Pro/CABLING, Pro/CASTING,
Pro/CDT, Pro/CMM, Pro/COLLABORATE, Pro/COMPOSITE, Pro/CONCEPT, Pro/CONVERT,
Pro/DATA for PDGS, Pro/DESIGNER, Pro/DETAIL, Pro/DIAGRAM, Pro/DIEFACE, Pro/DRAW, Pro/ECAD,
Pro/ENGINE, Pro/FEATURE, Pro/FEM-POST, Pro/FICIENCY, Pro/FLY-THROUGH, Pro/HARNESS,
Pro/INTERFACE, Pro/LANGUAGE, Pro/LEGACY, Pro/LIBRARYACCESS, Pro/MESH, Pro/Model.View,
Pro/MOLDESIGN, Pro/NC-ADVANCED, Pro/NC-CHECK, Pro/NCMILL, Pro/NCPOST,
Pro/NC-SHEETMETAL, Pro/NC-TURN, Pro/NC-WEDM, Pro/NC-Wire EDM, Pro/NETWORK ANIMATOR,
Pro/NOTEBOOK, Pro/PDM, Pro/PHOTORENDER, Pro/PIPING, Pro/PLASTIC ADVISOR, Pro/PLOT,
Pro/POWER DESIGN, Pro/PROCESS, Pro/REPORT, Pro/REVIEW, Pro/SCAN-TOOLS,
Pro/SHEETMETAL, Pro/SURFACE, Pro/VERIFY, Pro/Web.Link, Pro/Web.Publish, Pro/WELDING,
ProductView, PTC Precision, Routed Systems Designer Shrinkwrap, Simple Powerful Connected,
The Product Development Company, Wildfire, Windchill DynamicDesignLink, Windchill PartsLink,
Windchill PDMLink, Windchill ProjectLink, and Windchill SupplyLink.

Patents of Parametric Technology Corporation or a Subsidiary
Additionally, equivalent patents may be issued or pending outside of the United States. Contact PTC for
further information.
GB2363208 25-August-2004
GB 2365567 10-March-2004
6,665,569 B1 16-December-2003
GB 2353115 10December-2003
6,625,607 B1 23-September-
2003
6,580,428 B1 17-June-2003
GB2354684B 02-July-2003
GB2384125 15-October-2003
GB2354096 12-November-2003
GB2354924 24-September-
2003
6,608,623 B1 19 August 2003
GB2353376 05-November-2003
GB2354686 15-October-2003

6,545,671 B1 08-April-2003
GB2354685B 18-June-2003
GB2354683B 04-June-2003
6,608,623 B1 19 August 2003
6,473,673 B1 29-October-2002
GB2354683B 04-June-2003
6,447,223 B1 10-Sept-2002
6,308,144 23-October-2001
5,680,523 21-October-1997
5,838,331 17-November-1998
4,956,771 11-September-1990
5,058,000 15-October-1991
5,140,321 18-August-1992

5,423,023 05-June-1990
4,310,615 21-December-1998
4,310,614 30-April-1996
4,310,614 22-April-1999
5,297,053 22-March-1994
5,513,316 30-April-1996
5,689,711 18-November-1997
5,506,950 09-April-1996
5,428,772 27-June-1995
5,850,535 15-December-1998
5,557,176 09-November-1996
5,561,747 01-October-1996

Third-Party Trademarks
Adobe, Acrobat, Distiller and the Acrobat Logo are trademarks of Adobe Systems Incorporated.
Advanced ClusterProven, ClusterProven, and the ClusterProven design are trademarks or registered
trademarks of International Business Machines Corporation in the United States and other countries and
are used under license. IBM Corporation does not warrant and is not responsible for the operation of this
software product. AIX is a registered trademark of IBM Corporation. Allegro, Cadence, and Concept are
registered trademarks of Cadence Design Systems, Inc. Apple, Mac, Mac OS, and Panther are trademarks
or registered trademarks of Apple Computer, Inc. AutoCAD and Autodesk Inventor are registered
trademarks of Autodesk, Inc. Baan is a registered trademark of Baan Company. CADAM and CATIA are
registered trademarks of Dassault Systemes. COACH is a trademark of CADTRAIN, Inc. DOORS is a
registered trademark of Telelogic AB. FLEXlm is a trademark of Macrovision Corporation. Geomagic is a
registered trademark of Raindrop Geomagic, Inc. EVERSYNC, GROOVE, GROOVEFEST, GROOVE.NET,
GROOVE NETWORKS, iGROOVE, PEERWARE, and the interlocking circles logo are trademarks of
Groove Networks, Inc. Helix is a trademark of Microcadam, Inc. HOOPS is a trademark of Tech Soft
America, Inc. HP-UX is a registered trademark Hewlett-Packard Company. I-DEAS, Metaphase, Parasolid,
SHERPA, Solid Edge, and Unigraphics are trademarks or registered trademarks of UGS Corp.
InstallShield is a registered trademark and service mark of InstallShield Software Corporation in the
United States and/or other countries. Intel is a registered trademark of Intel Corporation. IRIX is a
registered trademark of Silicon Graphics, Inc. LINUX is a registered trademark of Linus Torvalds,
MainWin and Mainsoft are trademarks of Mainsoft Corporation. MatrixOne is a trademark of MatrixOne,
Inc. Mentor Graphics and Board Station are registered trademarks and 3D Design, AMPLE, and Design
Manager are trademarks of Mentor Graphics Corporation. MEDUSA and STHENO are trademarks of CAD
Schroer GmbH. Microsoft, Microsoft Project, Windows, the Windows logo, Windows NT, Visual Basic, and
the Visual Basic logo are registered trademarks of Microsoft Corporation in the United States and/or other
countries. Netscape and the Netscape N and Ship's Wheel logos are registered trademarks of Netscape
Communications Corporation in the U.S. and other countries. Oracle is a registered trademark of Oracle
Corporation. OrbixWeb is a registered trademark of IONA Technologies PLC. PDGS is a registered
trademark of Ford Motor Company. RAND is a trademark of RAND Worldwide. Rational Rose is a
registered trademark of Rational Software Corporation. RetrievalWare is a registered trademark of
Convera Corporation. RosettaNet is a trademark and Partner Interface Process and PIP are registered
trademarks of RosettaNet, a nonprofit organization. SAP and R/3 are registered trademarks of SAP AG
Germany. SolidWorks is a registered trademark of SolidWorks Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
United States and in other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun logo, Solaris, UltraSPARC, Java and
all Java based marks, and “The Network is the Computer” are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and in other countries. TIBCO, TIBCO Software,
TIBCO ActiveEnterprise, TIBCO Designer, TIBCO Enterprise for JMS, TIBCO Rendezvous,
TIBCO Turbo XML, TIBCO BusinessWorks are the trademarks or registered trademarks of TIBCO
Software Inc. in the United States and other countries. WebEx is a trademark of WebEx Communications,
Inc. Certain PTC software products contain licensed third-party technology: Rational Rose 2000E is
copyrighted software of Rational Software Corporation. RetrievalWare is copyrighted software of Convera
Corporation. VisTools library is copyrighted software of Visual Kinematics, Inc. (VKI) containing
confidential trade secret information belonging to VKI. HOOPS graphics system is a proprietary software
product of, and is copyrighted by, Tech Soft America, Inc. G-POST is copyrighted software and a registered
trademark of Intercim. VERICUT is copyrighted software and a registered trademark of CGTech.
Pro/PLASTIC ADVISOR is powered by Moldflow technology. Moldflow is a registered trademark of

Moldflow Corporation. MainWin Dedicated Libraries are copyrighted software of Mainsoft Corporation.
Certain software provided by TIBCO Software Inc. The JPEG image output in the Pro/Web.Publish module
is based in part on the work of the independent JPEG Group. DFORMD.DLL is copyrighted software from
Compaq Computer Corporation and may not be distributed. METIS, developed by George Karypis and
Vipin Kumar at the University of Minnesota, can be researched at http://www.cs.umn.edu/~karypis/metis.
METIS is © 1997 Regents of the University of Minnesota. LightWork Libraries are copyrighted by
LightWork Design 1990–2001. Visual Basic for Applications and Internet Explorer is copyrighted software
of Microsoft Corporation. Parasolid © UGS Corp. Windchill Info*Engine Server contains IBM XML Parser
for Java Edition and the IBM Lotus XSL Edition. Pop-up calendar components Copyright © 1998 Netscape
Communications Corporation. All Rights Reserved. TECHNOMATIX is copyrighted software and contains
proprietary information of Technomatix Technologies Ltd. TIBCO ActiveEnterprise, TIBCO Designer,
TIBCO Enterprise for JMS, TIBCO Rendezvous, TIBCO Turbo XML, TIBCO BusinessWorks are provided
by TIBCO Software Inc. Technology "Powered by Groove" is provided by Groove Networks, Inc. Technology
"Powered by WebEx" is provided by WebEx Communications, Inc. Oracle 8i run-time and Oracle 9i run-
time, Copyright 2002–2003 Oracle Corporation. Oracle programs provided herein are subject to a restricted
use license and can only be used in conjunction with the PTC software they are provided with. Apache
Server, Tomcat, Xalan, Xerces and Jakarta are technologies developed by, and are copyrighted software of,
the Apache Software Foundation (http://www.apache.org/) – their use is subject to the terms and limitations
of the Apache License at: http://www.apache.org. Adobe Acrobat Reader and Adobe Distiller are copyrighted
software of Adobe Systems Inc. and is subject to the Adobe End-User License Agreement as provided by
Adobe with those products.UnZip (© 1990-2001 Info-ZIP, All Rights Reserved) is provided “AS IS” and
WITHOUT WARRANTY OF ANY KIND. For the complete Info ZIP license see
ftp://ftp.info-zip.org/pub/infozip/license.html. The Java™ Telnet Applet (StatusPeer.java, TelnetIO.java,
TelnetWrapper.java, timedOutException.java), Copyright © 1996, 97 Mattias L. Jugel, Marcus Meißner, is
redistributed under the GNU General Public License. This license is from the original copyright holder and
the Applet is provided WITHOUT WARRANTY OF ANY KIND. You may obtain a copy of the source code
for the Applet at http://www.mud.de/se/jta (for a charge of no more than the cost of physically performing
the source distribution), by sending e-mail to leo@mud.de or marcus@mud.de—you are allowed to choose
either distribution method. The source code is likewise provided under the GNU General Public License.
GTK+ - The GIMP Toolkit are licensed under the GNU Library General Public License (LGPL). You may
obtain a copy of the source code at http://www.gtk.org/, which is likewise provided under the GNU LGPL.
zlib software Copyright © 1995-2002 Jean-loup Gailly and Mark Adler. May include cryptographic software
written by Eric Young (eay@cryptsoft.com). OmniORB is distributed under the terms and conditions of the
GNU. The Java Getopt.jar, copyright 1987-1997 Free Software Foundation, Inc.; Java Port copyright 1998
by Aaron M. Renn (arenn@urbanophile.com), is redistributed under the GNU LGPL. You may obtain a copy
of the source code at: http://www.urbanophile.com/arenn/hacking/download.html. The source code is
likewise provided under the GNU LGPL. This product may include software developed by the OpenSSL
Project for use in the OpenSSL Toolkit. (http://www.openssl.org/): Copyright (c) 1998-2003 The OpenSSL
Project. All rights reserved. This product may include cryptographic software written by Eric Young
(eay@cryptsoft.com). Gecko and Mozilla components are subject to the Mozilla Public License Version 1.1 at
http://www.mozilla.org/MPL/. Software distributed under the Mozilla Public License (MPL) is distributed
on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the MPL for
the specific language governing rights and limitations. Mozilla Japanese localization components are
subject to the Netscape Public License Version 1.1 (at http://www.mozilla.org/NPL/). Software distributed
under Netscape Public License (NPL) is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
KIND, either express or implied (see the NPL for rights and limitations that are governing different
languages). The Original Code is Mozilla Communicator client code, released March 31, 1998 and the Initial
Developer of the Original Code is Netscape Communications Corporation. Portions created by Netscape are
Copyright (c) 1998 Netscape Communications Corporation. All Rights Reserved. Contributor(s): Kazu
Yamamoto <kazu@mozilla.gr.jp>; Ryoichi Furukawa <furu@mozilla.gr.jp>; Tsukasa Maruyama
<mal@mozilla.gr.jp>; Teiji Matsuba <matsuba@dream.com>.

UNITED STATES GOVERNMENT RESTRICTED RIGHTS LEGEND
This document and the software described herein are Commercial Computer Documentation and Software,
pursuant to FAR 12.212(a)-(b) (OCT’95) or DFARS 227.7202-1(a) and 227.7202-3(a) (JUN’95), and are
provided to the US Government under a limited commercial license only. For procurements predating the
above clauses, the use, duplication, or disclosure by the Government is subject to the restrictions set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS
252.227-7013 (OCT’88) or Commercial Computer Software-Restricted Rights at FAR 52.227-19(c)(1)-(2)
(JUN’87), as applicable.

Parametric Technology Corporation, 140 Kendrick Street, Needham, MA 02494 USA 010505

 v

Contents

About This Guide ... ix
Related Documentation ... x
Technical Support .. x
Documentation for PTC Products ..xi
Comments..xi
Documentation Conventions..xi

Info*Engine Architecture... 1-1
Identifying the Info*Engine Components ..1-2
Identifying Basic Configurations..1-3
Interacting with Info*Engine ..1-3
Managing the Execution of Info*Engine Tasks ...1-8
Starting and Locating Info*Engine Components...1-10
Setting Up Connections Through Adapters ..1-11

Installing and Configuring the Adapter.. 2-1
Installation Overview...2-2
Before You Begin an Adapter Installation...2-3
Installing and Configuring the JDBC Adapter ...2-4
Creating the JDBC Adapter LDAP Entry ..2-15
Sample Start File Contents ...2-16
Naming the Adapter in Webject INSTANCE Parameters ...2-19
JDBC Adapter Properties..2-21
JDBC Adapter Logging Capabilities..2-22

The Webject Library... 3-1
Webject Library Overview ...3-2
Processing BLOBs..3-2
Running the Webject Examples..3-3

vi JDBC Adapter Guide

Batch-Execute-Procedure .. 3-4
Create-Object ... 3-11
Delete-Objects.. 3-15
Describe-Attributes ... 3-18
Do-SQL... 3-21
Execute-Procedure... 3-25
Prepared-Batch-Update.. 3-34
Put-Blob-Stream ... 3-39
Put-Bulk-Stream ... 3-43
Put-Clob-Stream... 3-48
Query-Attributes ... 3-54
Query-Objects .. 3-58
Send-Blob-Stream.. 3-62
Send-Bulk-Stream .. 3-67
Send-Clob-Stream.. 3-74
Transaction... 3-80
Update-Objects... 3-90
Validate-User.. 3-94

 vii

Change Record

This section details major changes applied to this book.

Changes for Windchill 8.0

Change Description

Entire guide Removed all references to
Info*Engine 5.1 and 6.x, because
the adapter is no longer supported
on these releases.

Chapter 2, Installing and
Configuring the Adapter

Updated the software platform
matrix URL.

Chapter 2, Installing and
Configuring the JDBC Adapter

Updated the installation procedure.

Chapter 2, JDBC Adapter Properties Added a new property named
Result Set Scrolling Capability.

Chapter 3, The Webject Library Updated descriptions for
ATTRIBUTE, FIELD and CLASS
webject parameters.

Chapter 3, Execute-Procedure Added two new examples:

Executing a Stored Procedure that
takes a STRUCT type OUT
argument

Executing a Stored Procedure that
takes a STRUCT type IN argument

Chapter 3, Put-Bulk-Stream Updated PutBulkStream.jsp.

 ix

About This Guide

This JDBC Adapter Guide documents the use of the PTC Info*Engine JDBC
adapter software. It contains the following chapters:

• About This Guide is the section you are currently reading. It details the
helpful documentation associated with this adapter, the contact
information for technical support and documentation comments, as well
as the documentation conventions specific to this manual.

• Architectural Overview describes the general Info*Engine architecture.

• Installing and Configuring the Adapter describes how to install and
configure the Info*Engine JDBC adapter.

• The JDBC Webject Library details each of the webjects available for use
with the adapter.

This guide assumes you are familiar with the basics of HTML, XML, and JSP
as defined by the World Wide Web Consortium (http://www.w3c.org).

To take advantage of the advanced functionality of Info*Engine, you must
have expert knowledge of HTML, XML, and JSP.

x JDBC Adapter Guide

Related Documentation
The following Info*Engine documents may be helpful to you:

• The Info*Engine Installation and Configuration Guide details the
procedure for installing and configuring the Info*Engine Server.

• The Info*Engine User's Guide details the main functionality of the
Info*Engine Server.

• The Info*Engine Java Adapter Development Kit Programming Reference
describes how to develop your own native Info*Engine adapters using the
Java programming language if the PTC adapter library does not contain
an adapter that suits your needs. The Info*Engine Java Adapter
Development Kit (including the documentation) is sold as a separate
product. See your sales representative for more information

Technical Support
Contact PTC Technical Support via the PTC Web site, phone, fax, or email if
you encounter problems using this adapter.

For complete details, refer to Contacting Technical Support in the PTC
Customer Service Guide enclosed with your shipment. This guide can also be
found under the Support Bulletins section of the PTC Web site at:

http://www.ptc.com/support/index.htm

The PTC Web site also provides a search facility that allows you to locate
Technical Support technical documentation of particular interest. To access
this page, use the following link:

http://www.ptc.com/cs/search.htm

You must have a Configuration ID before you can receive technical support. If
you do not have an ID, contact PTC License Management using the
instructions found in your PTC Customer Service Guide under Contacting
License Management.

http://www.ptc.com/support/index.htm
http://www.ptc.com/cs/search.htm

About This Guide xi

Documentation for PTC Products
PTC provides documentation in the following forms:

• Help topics

• PDF books

To view and print PDF books, you must have the Adobe Acrobat Reader
installed.

The adapter documentation is included on the CD. In addition, books updated
after release (for example, to support a hardware platform certification) are
available from the Reference Documents section of the PTC Web site, at the
following URL:

http://www.ptc.com/appserver/cs/doc/refdoc.jsp

Comments
PTC welcomes your suggestions and comments on its documentation. You
can submit your feedback through the online survey form at the following
URL:

http://www.ptc.com/go/wc_pubs_feedback

Please include the name of the application and its release number with your
comments. For online books, provide the book title.

Documentation Conventions
Info*Engine documentation uses the following conventions:

Convention Item Example

Bold Names of elements in the user interface
such as buttons, menu paths, and dialog
box titles.

Click OK.
Select File > Save.
License File dialog box

Italic Variable and user-defined elements in
syntax formats.

create_tablename.sql

Monospace Examples

Messages

</ie:webject>

Processing completed.

"Quotation
marks"

Strings The string "UsrSCM" . . .

http://www.ptc.com/appserver/cs/doc/refdoc.jsp
http://www.ptc.com/go/wc_pubs_feedback

 1-1

1
Info*Engine Architecture

In order to understand the operation of Info*Engine adapters, you must first
understand how adapters work within the Info*Engine architecture. This
chapter describes each component of the Info*Engine architecture and details
how those components work in concert.

Topic Page

Identifying the Info*Engine Components ..1-2

Identifying Basic Configurations..1-3

Interacting with Info*Engine ...1-3

Managing the Execution of Info*Engine Tasks...1-8

Starting and Locating Info*Engine Components ..1-10

Setting Up Connections Through Adapters...1-11

1-2 JDBC Adapter Guide

Identifying the Info*Engine Components
The following components make up the Info*Engine architecture:

• The Info*Engine servlet provides an interface between the Web server
and Info*Engine.

• The Info*Engine server provides a mechanism for retrieving and
manipulating the data that users or custom applications want to view or
receive.

• The Naming Service is the software that supports the operation of
Info*Engine components. In the Info*Engine Naming Service, you can
identify the LDAP directory servers where entries for the network
addresses of Info*Engine components and entries for configuration
properties reside.

• The Info*Engine Service Access Kit (SAK) is an application program
interface (API) that facilitates the development of Java applications,
including JSP pages, that directly utilize the functions and features of
Info*Engine. For example, high-level Info*Engine components such as
the Info*Engine Servlet, the Info*Engine Server, and the E-Mail Broker
use the SAK to invoke tasks and individual webjects.

• The native adapters provide a direct interface between Info*Engine and
information systems.

• The non-native adapters provide an indirect interface between
Info*Engine and information systems. These adapters use a different
protocol from the protocol used by Info*Engine and therefore cannot
connect directly to Info*Engine.

• Gateways provide an interface between Info*Engine and non-native
adapters.

• The Info*Engine SOAP (Simple Object Access Protocol) RPC
servlet catches and processes Info*Engine SOAP requests that are made
over the Web. SOAP is a lightweight protocol that can be used by non-
Java applications. By using this protocol, non-Java applications can send
requests to execute Info*Engine code and return the output that is
generated.

• The E-Mail Broker provides a process by which users can e-mail
Info*Engine requests to a mailbox. Using the SAK, the messages in the
mailbox are then passed on to the Info*Engine Server for processing.

The remainder of the chapter describes the relationships among the
components.

Info*Engine Architecture 1-3

Identifying Basic Configurations
Info*Engine components can be used in many different software and
hardware configurations to meet your business requirements for accessing,
managing, and presenting data from many different information systems.

Setting up your Info*Engine environment can be accomplished by:

• Establishing interactions with Info*Engine.

• Managing the execution of Info*Engine tasks.

• Starting and managing Info*Engine components.

• Managing connections to the information systems where the data of
interest resides.

Interacting with Info*Engine
Initiating an interaction with Info*Engine can be accomplished by using one
or more of the following:

• Custom Java applications, including JavaServer Pages (JSP).

• Web Servers that process Info*Engine requests. The requests can come
from applications, Web browsers, or wireless devices such as cell phones
and personal digital assistants (PDAs).

• E-mail requests that contain formatted messages sent to a predefined
Info*Engine mailbox.

• Java Message Service (JMS) events and messages that queue
Info*Engine tasks for execution.

• Custom non-Java applications that make requests to execute Info*Engine
tasks. These applications use the Info*Engine SOAP Servlet.

1-4 JDBC Adapter Guide

The following diagram shows how the Info*Engine components and other
customer software components can interact to execute Info*Engine code.

Info*Engine code consists of Java classes that are accessed through the
Info*Engine API. The API is available through the SAK and externalizes
predefined functions called webjects and tasks. The webjects and tasks can be
easily instantiated and invoked as Java objects from a Java application or in
a text file. Info*Engine text files can be accessed using requests or code
within an application.

The following sections provide more details about how to use the Info*Engine
components with your software.

Info*Engine Architecture 1-5

Using a Custom Java Application
By coding a custom application in Java, you can have quick and easy access
to Info*Engine without the added complexity of a Web server. By using the
API defined in the SAK, you can execute Info*Engine webjects, tasks, and
other Info*Engine code in the Java Virtual Machine (JVM) where the
application resides.

The following diagram shows the SAK and adapter classes being used in the
application to access data in a remote database.

Enterprise Data

Custom Java
Application

SAK

Adapter

Within a Java application, you also have the flexibility of executing
Info*Engine tasks that are maintained outside of the application. An
Info*Engine task consists of a set of webjects and surrounding code that
supports the processing of the webjects. These tasks can then be processed
either in the JVM of any Info*Engine Server or in the JVM of the application.

The following diagram shows the Info*Engine components that are used
when an application executes a task in an Info*Engine Server. In this case
the application requests that a task be executed in the server that accesses
data in a remote database.

Info*Engine
Server

Adapter

Enterprise Data

Custom Java
Application

SAK

1-6 JDBC Adapter Guide

Using a Web Server to Process Info*Engine Requests
The installation process steps you through a procedure that deploys
Info*Engine as a Web application. Going through the installation process sets
up your Web server and its servlet engine to identify Info*Engine requests
and pass those requests on to Info*Engine components for processing. After
the installation is complete, your Info*Engine environment is set up so that
Info*Engine requests to execute JSP and HTML pages coming from Web
browsers are processed correctly.

By doing some additional Info*Engine configuration steps, you can set up
your Info*Engine environment to process requests from the following
additional sources:

• If you configure Info*Engine to identify wireless communication
protocols, requests can come from wireless communication devices such
as a cell phone.

• If you configure the Info*Engine SOAP RPC Servlet, Info*Engine SOAP
requests can come from non-Java applications.

The following diagram shows the relationships among the components that
process Web browser requests for JSP pages.

Web Server

JSP Engine

SAK

Enterprise Data

Web Browser
Request

Adapter

This diagram shows the components that are used when the request specifies
that Info*Engine execute a JSP page. By default, Info*Engine and Web
server configuration specifies that JSP pages are processed in the JSP engine
of the servlet engine installed on your Web server. The JSP engine creates an
instance of the SAK, which is then used to execute the Info*Engine-specific
code on the page. For example, if a user clicks a link or uses a URL in a
browser window that serves as a JSP request for information from
Info*Engine, the JSP engine and the SAK work together to manage the
request.

The SAK processes the request and, as needed, connects to specialized
Info*Engine adapters that communicate with external applications such as
Oracle databases, PDM systems, various legacy systems, and ERP systems.
After the requested information is obtained from the external applications,
the process reverses itself and ultimately displays information in the user's
browser window.

Info*Engine Architecture 1-7

Making E-Mail Requests to Info*Engine
The E-Mail Broker allows users to make Info*Engine requests by e-mail.

The E-Mail Broker provides a process that monitors a mailbox for requests to
execute Info*Engine templates and tasks. When a request arrives in the
mailbox, the E-Mail Broker connects to the server and passes the request to
the Info*Engine server for processing. It also captures output from the
processed template or task, and returns the output in an e-mail message to
the address specified in the From or Reply-To heading of the original request.

E-Mail Request

Info*Engine Server

E-Mail BrokerMailbox

User E-Mail Broker returns
message to user with results

Server
processes

request

User sends
request to
mailbox

1-8 JDBC Adapter Guide

Managing the Execution of Info*Engine Tasks
Info*Engine tasks control the retrieval and manipulation of data. Tasks
consist of the following:

• Info*Engine webjects that retrieve and manipulate data.

• Surrounding Info*Engine custom tags that manage the execution of the
webjects.

There are two basic ways to execute tasks:

• Incorporate tasks directly into any Java application, including JSP pages,
using Info*Engine custom tags.

• Put the tasks in individual text-based documents, specify which tasks to
execute in the Info*Engine custom tags within a Java application (or JSP
page).

The decisions about how and where to execute Info*Engine tasks depend on
your system requirements. For example, if you have a dedicated environment
where one system contains both your Info*Engine application and all of the
required software components, and the tasks to execute do not require any
complex processing, you may choose to execute your tasks from within JSP
pages that are also used to display the results. In this case, the environment
used could be similar to the following:

Web Server

JSP Engine

SAK

Enterprise Data

Web Browser
Request

Adapter

The JSP engine depicted in the diagram instantiates an instance of the SAK
within the JVM of the JSP engine. The SAK is then used to process the
Info*Engine custom tags. Some of the Info*Engine tags can execute webjects
that extract data from enterprise systems through an adapter, while others
can display the data. In this example, all of the webjects are contained in the
same JSP page.

Info*Engine Architecture 1-9

In a more complex environment where you have a large Java application that
executes complex tasks, you can manage the tasks more efficiently by
separating them into individual documents, rather than coding them directly
into the application. When a task is contained in its own document, it is
called a standalone task. For a standalone task, the following processing
options are available:

• You can specify where you want a standalone task to execute, whether it
is in the same JVM as the application or in the JVM of any Info*Engine
Server that is part of your environment.

• You can specify how you want to execute standalone tasks that do not
execute in the same JVM as the application. There are three ways to
execute these standalone tasks:

– Requesting, through a TCP/IP connection, that the task executes in a
specific Info*Engine server. Each Info*Engine server listens for task
requests and executes them upon arrival.

– Implementing a specific event that executes tasks. Establishing
events through an Info*Engine Web Event Service allows you to
execute tasks based on specific actions that can occur in your
environment.

– Queuing a task for execution. After you queue a task, you can
disconnect from your application. Any results are queued for later
retrieval either by you or others. By queuing a task, you can also
guarantee that the task will be completed, even if it is interrupted
due to a system problem.

By performing the basic Info*Engine installation, the Info*Engine server
is set up to receive task requests. To use either queues or events for
executing tasks, you must install and configure additional Message-
Oriented Middleware (MOM) software and then update your Info*Engine
configuration.

1-10 JDBC Adapter Guide

Starting and Locating Info*Engine Components
The Naming Service uses an LDAP directory to provide the Info*Engine
Servlet, the Info*Engine server, the native adapters, and the Info*Engine
gateways with a means of locating each other, acting as a traffic director of
sorts.

In the following diagram, dashed lines represent the communication between
the Naming Service, Info*Engine components, and third party software that
could be installed.

Web Server

Info*Engine
Servlet

JSP
Engine

SAK

Info*Engine
Server

E-Mail
Broker

Gateway

Non-Native AdapterNative Adapter

Enterprise Data

LDAP
Directory

Naming
Service

MOM

Additionally, if you configure the Info*Engine SOAP RPC servlet, there will
be an entry in the Naming Service for this servlet.

The Naming Service can be used to automatically start Info*Engine
components residing on the same hardware system. By default, the Naming
Service is set up during the installation to start the Info*Engine Server and
the E-Mail Broker. Depending on where you install adapters and gateways,
you may want to configure the Naming Service to start them as well.

Info*Engine Architecture 1-11

Setting Up Connections Through Adapters
Adapters provide a connection between the Info*Engine Server and
information systems. One side of the adapter communicates with the
Info*Engine Server and the other side communicates with the information
system. The adapter translates Info*Engine Server requests into information
system requests.

Info*Engine provides two types of adapters:

• Native adapters are implemented in the Java language and conform to
the formal Info*Engine interface specification. For example, the JNDI
and JDBC adapters are native adapters.

• Non-native adapters are implemented in a non-Java language or do not
conform to the formal Info*Engine interface specification. Because the
implementation is different from Info*Engine, you must also define a
gateway for each non-native adapter you install. Gateways translate
Info*Engine requests so that the adapters can process them. After an
adapter receives a request, the adapter sends it to the associated
database or data repository. The adapter also returns any information
obtained from the data repository to the gateway where it is translated
and passed back to the Info*Engine Server.

The adapters you must use are determined by the information systems from
which you want to retrieve information. Info*Engine provides a unique
adapter for each information system. For example, to retrieve information
from a Metaphase database, you must install and configure the Metaphase
adapter.

Native adapters can be installed as follows:

• Residing in the same Java Virtual Machine as the Info*Engine webject
that accesses the adapter (known as the in-process adapter).

• Distributed in their own Java Virtual Machine on the same hardware
system or on remote hardware systems (known as out-of-process
adapters).

How to install native adapters is determined by your site.

Gateways usually reside in the same Java Virtual Machine as the calling
webject since the code for gateways is installed as part of Info*Engine.

Non-native adapters are always distributed in their own environment and
are run as out-of-process adapters.

The following sections expand on the installation options.

1-12 JDBC Adapter Guide

Using In-Process Adapters and Gateways
In-process adapters and gateways are installed and run in the same Java
Virtual Machine as the calling webject. Only native adapters and gateways
can be configured to run in the same JVM as the calling webject. The SAK
determines which classes are required when processing webjects for an in-
process adapter or gateway, and instantiates the classes in the JVM.
Therefore, the communication between the webject and the adapter or
gateway is very efficient.

Configuring in-process adapters and gateways minimizes communication
delays and resource usage; however, the total resource usage of the machine
hosting the Info*Engine code may be increased because of the additional load
burden of running the adapter or gateway.

When an adapter is configured to be an in-process adapter, the adapter
classes can be instantiated by any SAK that executes adapter webjects. The
following diagram shows adapter classes residing in the JVM of a custom
Java application, the Web server, and the Info*Engine Server:

As shown in the diagram, no external communication is needed between the
SAK and the adapter when the adapter is in the same process.

Running in-process native adapters and gateways is generally the preferred
configuration if the resource usage on a single system is not excessive.

Info*Engine Architecture 1-13

Using Out-of-Process Adapters and Gateways
Distributing adapters across multiple hardware systems reduces the overall
resource usage on the machine hosting the Info*Engine code; however, it does
introduce some delay and resource usage associated with using a TCP/IP
connection for communicating between Info*Engine components and each
adapter.

The following diagram shows the communication lines that are used when
three adapters and one gateway are distributed.

Distributed native adapters and gateways are installed and run in their own
Java Virtual Machine. These virtual machines can be on the same hardware
system as the Info*Engine Server or on a different hardware system. Non-
native adapters can only be configured as out-of-process adapters, and they
always run as separate processes. Although gateways for non-native adapters
are typically configured as in-process gateways to minimize the
communication delays, they do not need to be in the same process.

The deployment of distributed adapters at your site may be determined by a
company policy that requires the adapter to be located near the application it
accesses, or it may be based on administrative reasons. One reason for
running a native adapter in its own Java Virtual Machine could be to better
manage the resource usage of the virtual machine.

 2-1

2
Installing and Configuring the Adapter

This chapter describes all of the installation and configuration procedures for
the JDBC adapter.

See the Certified Software Platform Matrix
(http://www.ptc.com/cs/doc/index.htm) for information on supported systems
and platforms. You can view the matrix from:

http://www.ptc.com/appserver/cs/doc/refdoc.jsp

This URL directs you to the PTC Online Support Web page for reference
documents. For your document search criteria, select Windchill
Info*Engine from the Product drop-down list. Then select the certified
software platform matrix for this release from the returned document list.

Topic Page

Installation Overview..2-2

Before You Begin an Adapter Installation...2-3

Installing and Configuring the JDBC Adapter ...2-4

Creating the JDBC Adapter LDAP Entry ...2-15

Sample Start File Contents ..2-16

Naming the Adapter in Webject INSTANCE Parameters............................2-19

JDBC Adapter Properties ...2-21

JDBC Adapter Logging Capabilities ..2-22

http://www.ptc.com/appserver/cs/doc/refdoc.jsp

2-2 JDBC Adapter Guide

Installation Overview
Regardless of whether you are performing a new installation or upgrading an
existing installation, PTC suggests you review the following summary before
proceeding. Installing or upgrading the Info*Engine JDBC adapter takes
several steps and requires strong knowledge of the current JDBC installation
at your site.

1. Prepare yourself and your site for the installation or upgrade.

Carefully read the sections detailing the information required before you
can begin installing or upgrading all adapter software. The installation or
upgrade may require special access permissions.

2. Mount the Windchill Info*Engine JDBC Adapter CD-ROM or if you have
downloaded the software, navigate to the directory that contains your
adapter software.

If the adapter software was distributed on a CD-ROM, be sure you know
the appropriate mount point at your site for a CD-ROM installation.

3. Install the adapter.

You can install the adapter into any directory.

4. Configure the adapter and resolve error messages, if any, that appear
during startup.

5. Test the installation of the adapter and resolve error messages, if any,
which appear.

Installing and Configuring the Adapter 2-3

Before You Begin an Adapter Installation
Several items must be obtained or considered before beginning the
installation and configuration of the JDBC adapter. Read these items
carefully before beginning the installation process.

1. Ensure that the Java 2 Software Development Kit version 1.4 (SDK) has
been installed and is running on the adapter host. If Info*Engine has
been installed on this host, then the SDK has already been installed.

If you have not downloaded and installed the SDK for the machine
running the adapter host, you can obtain free or evaluation copies from
the following website:

http://www.javasoft.com/products

2. Ensure that the JDBC class libraries and the drivers appropriate for your
platform, operating system, and databases have been installed.

JDBC class libraries and drivers are available from the vendors of your
databases, not from PTC. Many database vendors offer downloadable
drivers via the World Wide Web. The Sun Microsystems website contains
a list of JDBC drivers that are publicly available for downloading from
various vendors:

http://industry.java.sun.com/products/jdbc/drivers

The Info*Engine JDBC adapter and Info*Engine do not work properly
without the appropriate database drivers. JDBC drivers that support the
JDBC 3.0 API can be used with the JDBC adapter. To ensure optimum
performance between the adapter and the databases you will access, PTC
highly recommends using type 4 drivers, which convert JDBC calls into a
network protocol used by a database directly.

Type 2 drivers will work well with the Info*Engine JDBC adapter, but
performance will be less than the optimum performance provided by type
4 drivers. Type 3 drivers also work with the JDBC adapter, but they
usually require additional software and the performance will also not be
optimum.

The type 1 driver, known as the JDBC-ODBC bridge, may be used with
the JDBC Adapter; however, performance will be less than optimum and
additional software from your database vendors may be required. The
type 1 driver is part of many versions of the JDK and JRE software and
may already exist at your site. It is important to remember that the type
1 driver does not allow direct access to databases on its own. An ODBC
client must be used between the JDBC-ODBC bridge and your databases.
Many databases today come with the ODBC client as part of their
installation or take advantage of an ODBC client native to the operating
system on which they run. In either case, you must configure your ODBC
client to communicate with your database.

http://www.javasoft.com/products
http://industry.java.sun.com/products/jdbc/drivers

2-4 JDBC Adapter Guide

3. Ensure that the Info*Engine components are installed and functioning
correctly.

The Info*Engine installation procedure includes requirements for
installing a compatible Web server and servlet engine. The JDBC adapter
works with the same Web servers and servlet engines as Info*Engine.
For information on installing and configuring Info*Engine, see the
Info*Engine Installation and Configuration Guide.

Installing and Configuring the JDBC Adapter
The installation and configuration process for the JDBC adapter is outlined
in the following sections. The process differs depending on whether the
adapter is to be used in-process with Info*Engine, out-of-process with
Info*Engine on the same host or out-of-process with Info*Engine on a
different host. To complete the installation and configuration, you must
create a JDBC Adapter LDAP entry after you complete the steps to install
and configure the JDBC Adapter as described in the section titled Creating
the JDBC Adapter LDAP Entry.

The InstallAnywhere framework is used by the JDBC Adapter installation
program. For basic information about using InstallAnywhere see the
Windchill Info*Engine Installation and Configuration Guide.

Installation and Configuration for Info*Engine on the Same Host
The installation and configuration process for the JDBC adapter to run in-
process with Info*Engine (or out-of-process with Info*Engine on the same
host) can be broken down into the following steps. These are applicable to
Windows, but the procedure is nearly the same even for the other supported
Operating Systems.

Note: You can click Previous and Next throughout the installation process
if you want to revise the installation selections.

1. Start the installer as follows:

– On a Windows system, if you are installing the adapter from a CD-
ROM and have autorun enabled, the installer starts automatically.

If the installer does not start within 30 seconds or you have
downloaded the software, double-click the setup.vbs file that resides
at the top level on the CD or downloaded directory.

– On a UNIX system, execute the setup file that resides at the top level
on the CD or downloaded directory.

 The Before You Begin panel opens.

Installing and Configuring the Adapter 2-5

2. Click Next. On the Select Installation Type panel, you will be asked to
select one of three installation types; these options are listed in the table
below:

Installation Type Description

Typical Selecting this results in the most common application
features getting installed.

Configuration Selecting this configures an existing JDBC adapter
installation.

Custom Selecting this enables one to customize the features
being installed.

 Select Typical. This option will install default settings, and is
recommended for most users.

3. Click Next. On the Select Directory panel, specify the installation
directory for the JDBC adapter. If the specified directory does not already
exist, a panel appears asking if you want to create the new directory.
Click Yes to proceed. You can also click Browse to find an existing
directory.

4. Click Next. The Specify Option panel opens.

Select one of the following options:

– In-process with Info*Engine

If you choose this option, continue on to the next step.

– Out-of-process (with Info*Engine on the same host)

If you choose this option, continue on to the next step.

– Out-of-process (with Info*Engine on a different host)

If you choose this option, see Installation and Configuration for
Info*Engine on a Different Host.

5. Click Next. On the Specify Directory panel, specify the installation
directory for Info*Engine. You can also click Browse to find the
directory.

2-6 JDBC Adapter Guide

6. Click Next. The next panel is determined by your previous selection:

– If you selected Out-of-process (with Info*Engine on the same
host) in the previous step, then, the Specify Database Type panel
opens. Specify whether the adapter will connect to an Oracle or a non-
Oracle database.

– If you selected In-prcoess with Info*Engine in the previous step,
then you are not prompted for the database type; skip the next step
and go to Step 8.

7. Click Next. If you chose Oracle from the previous panel for the database
type, specify the installation directory for Oracle.

8. Click Next. The Specify Configuration Info panel opens. The default
values appearing in this panel may be replaced by those that are
appropriate to your installation.

9. Click Next. If you chose to install the adapter to run out-of-process, the
Select Shortcut Location panel opens. Select a location for the shortcut
to the JDBC Adapter.

Installing and Configuring the Adapter 2-7

10. Click Next. On the Review Settings page, review the pre-installation
settings information that appears. If you need to make a change, click
Previous.

11. Click Install.

12. When the installation completes successfully, the Installation
Complete panel displays the directory where the JDBC Adapter was
installed.

Note: The installation log files are located in the
<installation_directory>\installer\logs directory. The log files for the
installation are named:

▪ JDBCAdapter_InstallLog.xml

▪ JDBCAdapter_PtcInstall.log

Note: When the adapter connects to a database other than Oracle, complete
the installation by carrying out the following manual steps:

• When installing the adapter to run in-process, copy the JDBC driver
provided by the database vendor to the <ie_dir>\codebase\WEB-INF\lib
directory.

• When installing the adapter to run out-of-process, copy the JDBC driver
provided by the database vendor to the adapter installation location and
include this location in the CLASSPATH entry in the adapter start file.

2-8 JDBC Adapter Guide

Installation and Configuration for Info*Engine on a Different Host
The installation and configuration process for the JDBC adapter to run as an
out of process one with Info*Engine running on a different host can be broken
down into the following steps. These are applicable to Windows, but the
procedure is nearly the same even for the other supported Operating
Systems.

Note: You can click Previous and Next throughout the installation process
if you want to revise the installation selections.

1. On a Windows system, if you are installing the adapter from a CD-ROM
and have autorun enabled, the installer starts automatically.

If the installer does not start within 30 seconds or you have downloaded
the software, double-click the setup.vbs file that resides at the top level
on the CD or downloaded directory.

On a UNIX system, execute the setup file that resides at the top level on
the CD or downloaded directory.

The Before You Begin panel opens.

2. Click Next. On the Select Installation Type panel, you will be asked to
select one of three installation types; these options are listed in the table
below:

Installation Type Description

Typical Selecting this results in the most common
application features getting installed.

Configuration Selecting this configures an existing JDBC adapter
installation.

Custom Selecting this enables one to customize the features
being installed.

 Select Typical. This option will install default settings, and is
recommended for most users.

3. Click Next. On the Select Directory panel, specify the installation
directory for the JDBC Adapter. You can also click Browse to find the
directory.

Installing and Configuring the Adapter 2-9

4. Click Next. The Specify Option panel opens.

Select one of the following options:

– In-process with Info*Engine

If you choose this option, see Installation and Configuration for
Info*Engine on the Same Host.

– Out-of-process (with Info*Engine on the same host)

If you choose this option, see Installation and Configuration for
Info*Engine on the Same Host.

– Out-of-process (with Info*Engine on a different host)

If you choose this option, continue on to the next step.

5. Click Next. The Important Information panel opens. Follow all the
instructions in the panel and enter a value for <ie_dir> in the field that
appears at the bottom of the panel.

6. Click Next. On the Specify Database Type panel, specify whether the
adapter will connect to an Oracle or a non-Oracle database.

7. Click Next. If you chose Oracle from the previous panel for the database
type, specify the installation directory for Oracle.

2-10 JDBC Adapter Guide

8. Click Next. The Specify Configuration Info panel opens. The default
values appearing in this panel may be replaced by those that are
appropriate to your installation.

9. Click Next. On the Select Shortcut Location panel, select a location
for the shortcut to the JDBC Adapter.

10. Click Next. On the Review Settings page, review the pre-installation
settings information that appears. If you need to make a change, click
Previous.

Installing and Configuring the Adapter 2-11

11. Click Install.

12. When the installation completes successfully, the Installation
Complete panel displays the directory where the JDBC Adapter was
installed.

Note: The installation log files are located in the
<installation_directory>\installer\logs directory. The log files for the
installation are named:

▪ JDBCAdapter_InstallLog.xml

▪ JDBCAdapter_PtcInstall.log

Note: When the adapter connects to a database other than Oracle, complete
the installation by carrying out the following manual steps:

• When installing the adapter to run in-process, copy the JDBC driver
provided by the database vendor to the <ie_dir>\codebase\WEB-INF\lib
directory.

• When installing the adapter to run out-of-process, copy the JDBC driver
provided by the database vendor to the adapter installation location and
include this location in the CLASSPATH entry in the adapter start file.

2-12 JDBC Adapter Guide

Installing the JDBC Adapter Form and Help

The JDBC adapter maintains its properties as attributes in Info*Engine
adapter LDAP entries. To define the adapter name and other adapter
attributes, and to establish adapter properties, you must create a JDBC
adapter LDAP entry using the Info*Engine Property Administrator.

Use the Info*Engine Property Administrator to add or modify existing
Info*Engine adapter service LDAP entries. Running the adapter installer
results in the file jdbc.ldif getting installed under the specified installation
location, which when imported into the Property Administrator provides the
form you use to create the JDBC adapter LDAP entry.

For general information about using the Info*Engine Property
Administrator, see the Info*Engine Installation and Configuration Guide and
the online help provided in the administrator.

When installing the adapter to run out-of-process with Info*Engine on a
different host, the file jdbc.ldif has to be imported and the help files copied
over manually as described below (you can skip this section, if you are
installing the adapter to run in-process or out-of-process with Info*Engine on
the same host).

To import the JDBC adapter form and add the form help, do the following:

1. Log into the Info*Engine host as any user.

2. Copy the jdbcAdapter.jar file from the adapter installation directory
which you created in the previous section to the codebase\WEB-INF\lib
directory where Info*Engine is installed.

The Info*Engine Property Administrator needs the resource bundle that
is in the jdbcAdapter.jar file in order to display the correct text on the
JDBC adapter form.

3. Add the JDBC property and form help files to the Info*Engine Property
Administrator help directories.

a. Copy the jdbcadaptersproperties_w.html file from the
<jdbc_dir>\codebase\infoengine\jsp\admin\help\en_US\Adapters
directory to the following Info*Engine directory:

<ie_dir>\codebase\infoengine\jsp\admin\help\en_US\Adapters

 where <jdbc_dir> is the adapter installation location and <ie_dir> is
the directory where Info*Engine is installed.

Installing and Configuring the Adapter 2-13

b. Copy the jdbc subdirectory and all files in this subdirectory from the
<jdbc_dir>\codebase\infoengine\jsp\admin\help\en_US\Adapters
directory to the Info*Engine directory:

<ie_dir>\codebase\infoengine\jsp\admin\help\en_US\Adapters

 where <jdbc_dir> is the adapter installation location and <ie_dir> is
the directory where Info*Engine is installed.

4. From the Info*Engine Property Administrator, click the
[Import/Export] link.

5. Click the Overwrite leaf entries if they exist check box.

6. Browse to the jdbc.ldif file that resides under the adapter installation
location.

7. Click OK to import the form.

This overwrites any existing JDBC form and returns you to the main page.

2-14 JDBC Adapter Guide

Verification
Performing a Typical installation of the JDBC adapter on the same host
where Info*Engine is installed causes certain example JSP and XML task
files to be installed on your system. The JSP files get installed under
<ie_dir>\codebase\infoengine\jsp\examples\JDBCAdapter\examples while
the XML task files get installed under
<ie_dir>\tasks\infoengine\examples\JDBCAdapter\example-tasks, where
<ie_dir> is the Info*Engine installation directory. Performing a JDBC
adapter installation on a host different from the Info*Engine host places the
examples in the JDBC installation directory; you must manually copy the
examples to an appropriate location under the Info*Engine installation
directory as seen in the paths above.

These examples allow you to test the adapter installation.

1. Edit the INSTANCE parameter in each example to the name of the
adapter instance you are testing. For further information on the
INSTANCE parameter see the section titled Naming the Adapter in
Webject INSTANCE Parameters.

2. Edit the parameter values in each example. Specify valid values for your
site.

3. Run the examples to confirm that your adapter installation is operating
correctly.

Installing and Configuring the Adapter 2-15

Creating the JDBC Adapter LDAP Entry
As stated earlier in this guide, the JDBC adapter properties are maintained
as attributes in Info*Engine adapter LDAP entries.

Use the Info*Engine Property Administrator to add or modify existing
Info*Engine adapter service LDAP entries.

For general information about using the Info*Engine Property
Administrator, see the Info*Engine Installation and Configuration Guide and
the online help provided in the Property Administrator.

Use the following procedure to create a JDBC Adapter LDAP entry:

1. To create a new JDBC adapter service LDAP entry, select JDBC
Adapter from the Create Entry list on the Info*Engine Property
Administrator main page. A form that includes the following displays:

2. Choose values for the required fields. The required fields are marked
with an asterisk (*). Click on the field heading to display information
about the JDBC properties on the form. For additional information see
the section titled JDBC Adapter Properties later in this chapter.

All forms include the following set of common fields that are located at
the top of the form:

Service Name
Distinguished Name
Runtime Service Name
Service Class
Host
Port
Serialization Type

2-16 JDBC Adapter Guide

When the form displays, Property Administrator populates the Service
Name, Distinguished Name, and Runtime Service Name fields with
suggested names. These names are based on information provided when
you logged in to the administrator and also information that is stored in
the form. You can change these names to match the criteria set up for
your site LDAP entries. For additional information about these fields,
view the online help for your form or talk to your Info*Engine
administrator. Additional information about setting up the criteria your
site should use for creating LDAP entries can be found in the Info*Engine
Installation and Configuration Guide.

Service Class contains the service class name used for the adapter. If
you are using the adapter as an in-process adapter, leave the default
name. If the adapter will only be used out of process, you must delete the
name in the Service Class field and add the host and port used to access
the adapter in the Host and Port fields.

The Serialization Type field allows you to change the type of data
serialization Info*Engine uses when passing data to an out-of-process
JDBC adapter. By default, Info*Engine components use Java
serialization when passing data between components. Java serialization
preserves data type information so that the data can be easily
manipulated from within an Info*Engine custom application, Java Server
Page, or task. To pass only XML, you would change the type to XML.

For help on Additional Properties, Co-resident Services, and
Additional Services options click the Help link on the main Property
Administrator page.

3. Click Create Adapter to complete.

Using the Adapter In Process
If you are using the adapter as an in-process adapter, leave the default
service class name in the Service Class field.

Using the Adapter Out of Process
If you are using the adapter only out of process, you must delete the name in
the Service Class field and add the host and port used to access the adapter
in the Host and Port fields.

Sample Start File Contents
Performing a Typical installation to run the adapter out-of-process with
Info*Engine results in a start file getting installed under the adapter
installation location. This file can be used for starting the JDBC adapter as
an out-of-process adapter.

Sample Windows Start File Contents
The following lines document the start file for the Windows Operating
System - note that this is only a sample and the formatting may not match
that of the actual file that gets installed on your system.

Installing and Configuring the Adapter 2-17

@echo off
REM Start up script for JDBC Adapter

REM Replace the variables in the following lines with the appropriate values:
REM <javaHome> is the location of the installed Java SDK.
REM <webAppHome> is the location of the Info*Engine installation directory.
REM <jdbcJarHome> is the location of the jdbcAdapter.jar file.
REM <oracleHome> is the location of the Oracle Installation.

set JAVA_HOME=<javaHome>
set WEB_APP_HOME=<webAppHome>
set JDBC_HOME=<jdbcJarHome>
set ORACLE_HOME=<oracleHome>

REM This classpath includes the JDBC driver classes.
REM This is required for the Query-Objects, Query-Attributes and Delete-Objects
REM webjects.
REM If different on your system, change the path to the classes12.zip file in the
REM next line.
set CLASSPATH=%ORACLE_HOME%\jdbc\lib\classes12.zip

REM This classpath is required to run JDBC Adapter.
set CLASSPATH=%CLASSPATH%;%JDBC_HOME%\jdbcAdapter.jar

REM This classpath is required so that all necessary Info*Engine .jar files are
REM loaded.
set CLASSPATH=%CLASSPATH%;%WEB_APP_HOME%\codebase\web-inf\lib\wc3rdpartylibs.jar
set CLASSPATH=%CLASSPATH%;%WEB_APP_HOME%\codebase\web-inf\lib\ie.jar
set CLASSPATH=%CLASSPATH%;%WEB_APP_HOME%\codebase\web-inf\lib\ie3rdpartylibs.jar
set CLASSPATH=%CLASSPATH%;%WEB_APP_HOME%\lib\servlet.jar
set CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\tools.jar

REM If LDAP adapter entries are not used, then comment out the lines that follow
REM the comments.
REM If LDAP adapter entries are used, then replace the following variables with the
REM appropriate values:

REM <propUrl> is the location of the ie.properties file, which is in the
REM codebase/WEB-INF directory where Info*Engine is installed. This file
REM contains a reference to the LDAP branch that contains the Info*Engine and
REM adapter properties, and contains LDAP validation information. If you do
REM not have access to this file, replace this variable with an LDAP URL that
REM provides the same information that is in the file. For additional
REM information about this file, see the Info*Engine Installation and
REM Configuration Guide.
REM <domain> is the host domain where Info*Engine is installed.

set IEPROPFILE=<propUrl>
set IENAMINGSERVICENAME=<domain>.namingService

echo JDBC Adapter
REM The following line starts the JDBC adapter as a standalone process
%JAVA_HOME%\bin\java.exe -cp "%CLASSPATH%" -DpropFile="%IEPROPFILE%" -
DserviceName=jdbcAdapter -DnamingServiceName="%IENAMINGSERVICENAME%"
com.infoengine.jdbc.JDBCAdapter
pause

Sample UNIX Start File Contents
The following lines document the start file for the UNIX Operating System -
note that this is only a sample and the formatting may not match that of the
actual file that gets installed on your system.

2-18 JDBC Adapter Guide

#!/bin/csh
Start up script for JDBC Adapter

Replace the variables in the following lines with the appropriate values:
<javaHome> is the location of the installed Java SDK.
<webAppHome> is the location of the Info*Engine installation directory.
<jdbcJarHome> is the location of the jdbcAdapter.jar file.
<oracleHome> is the location of the Oracle Installation.

set JAVA_HOME=<javaHome>
set WEB_APP_HOME=<webAppHome>
set JDBC_HOME=<jdbcJarHome>
set ORACLE_HOME=<oracleHome>

This classpath includes the JDBC driver classes.
This is required for the Query-Objects, Query-Attributes and Delete-Objects
webjects.
If different on your system, change the path to the classes12.zip file in the
next line.
set CLASSPATH={$ORACLE_HOME}/jdbc/lib/classes12.zip

This classpath required to run the JDBC Adapter.
set CLASSPATH={$CLASSPATH}:{$JDBC_HOME}/jdbcAdapter.jar

This classpath is required so that all necessary Info*Engine .jar files are
loaded.
set CLASSPATH={$CLASSPATH}:{$WEB_APP_HOME}/codebase/WEB-INF/lib/wc3rdpartylibs.jar
set CLASSPATH={$CLASSPATH}:{$WEB_APP_HOME}/codebase/WEB-INF/lib/ie.jar
set CLASSPATH={$CLASSPATH}:{$WEB_APP_HOME}/codebase/WEB-INF/lib/ie3rdpartylibs.jar
set CLASSPATH={$CLASSPATH}:{$WEB_APP_HOME}/lib/servlet.jar
set CLASSPATH={$CLASSPATH}:{$JAVA_HOME}/lib/tools.jar

If LDAP adapter entries are not used, then comment out the lines that follow the
comments.
If LDAP adapter entries are used, then replace the following variables with
the appropriate values.
<propUrl> is the location of the ie.properties file, which is in the
codebase/WEB-INF directory where Info*Engine is installed.
This file contains a reference to the LDAP branch that contains
the Info*Engine and adapter properties, and contains LDAP validation
information.
If you do not have access to this file, replace this variable with an LDAP
URL that provides the same information that is in the file.
For additionalinformation about this file,
see the Info*Engine Installation and Configuration Guide.
<domain> is the host domain where Info*Engine is installed.

set IEPROPFILE=<propUrl>
set IENAMINGSERVICENAME=<domain>.namingService

echo JDBC Adapter
echo Using Classpath...
echo $CLASSPATH

The following line starts the JDBC adapter as a standalone process:
$JAVA_HOME/bin/java -classpath {$CLASSPATH} -DpropFile={"$IEPROPFILE"} -
DserviceName=jdbcAdapter -DnamingServiceName={$IENAMINGSERVICENAME}
com.infoengine.jdbc.JDBCAdapter

Installing and Configuring the Adapter 2-19

ie.properties Location and Contents
The start files use the ie.properties file that the Info*Engine installer
generates as the value for the -DpropFile parameter on the Java start
command.

The ie.properties file is located in the codebase/WEB-INF directory where
Info*Engine is installed and contains a reference to the LDAP branch that
contains the Info*Engine properties. This reference also contains validation
information to ensure that the services can access the LDAP directory.

The installer generates the contents of the ie.properties file based on the
values that were entered when Info*Engine was installed. For more
information about this file, see the Info*Engine Installation and
Configuration Guide.

Example Naming Service Launch Property
The Naming Service enables you to automatically start out-of-process
adapters that are on the same host as the Naming Service when the Naming
Service starts.

To launch a component when the Naming Service starts, a Naming Service
Launch property must contain the Java startup command for the component
or must name a script file containing the startup command. You can set
Naming Service Launch properties through the Info*Engine Property
Administrator by editing the Launch fields in the Naming Service LDAP
entry.

Note: When you install the Naming Service, Naming Service Launch
properties are defined for both the Info*Engine server and the E-Mail Broker
(if you configure it) and they contain the file paths to the files that start the
server and the E-Mail Broker.

To set up a JDBC Launch property for an out-of-process JDBC adapter, add
an additional Launch field in the Naming Service LDAP entry. For example,
assume that your start file is named startJDBC.bat and is located in the
/bin/infoengine directory where Info*Engine is installed. Then the Launch
property that you enter is similar to the following:

cmd.exe /C start "JDBC Adapter" /MIN
C:/ptc/Windchill/bin/infoengine/startJDBC.bat

Naming the Adapter in Webject INSTANCE Parameters
You define the adapter name to use in the INSTANCE parameter when you
configure the adapter through the Info*Engine Property Administrator.

An adapter name can be one of the following forms:

• A simple name, which is defined in the Service Name field on the
Info*Engine Property Administrator service form. Simple names are
stored in the ptcServiceName attribute of the adapter LDAP entry. To
use a simple name, the adapter LDAP entry must reside within the
Naming Service search path. For example, assume that

2-20 JDBC Adapter Guide

"com.myCompany.myHost.jdbcAdapter" is the ptcServiceName attribute
of the adapter LDAP entry in the Naming Service search path. Then, the
following INSTANCE parameter can be used:

<ie:param name="INSTANCE"
data="com.myCompany.myHost.jdbcAdapter"/>

• A fully-qualified distinguished name. When configuring the adapter, you
specify the distinguished name on the Info*Engine Property
Administrator form. This name consists of the ptcServiceName attribute
and the other attributes that define the location of the LDAP entry.

For example if the "com.myCompany.myHost.jdbcAdapter" entry is
located on "host1" at "dc=IeProps,dc=myHost,dc=myCompany,
dc=com,ou=Applications,o=myCompany", then the distinguished name is
used in the INSTANCE parameter in the following form:

<ie:param name="INSTANCE" data="ldap://host1/
ptcServiceName=com.myCompany.myHost.jdbcAdapter,
dc=IeProps,dc=myHost,dc=myCompany,dc=com,
ou=Applications,o=myCompany"/>

• A domain-based reference name. This name is just another way of
identifying the distinguished name when the LDAP directory that has
the Info*Engine entries is constructed using dc=com as a root-level entry
and other dc attributes for subtree entries.

The format of a Info*Engine domain-based reference name is:

ptcServiceName@dc_attributes

In this format, ptcServiceName is the value of the ptcServiceName
attribute and dc_attributes are the dc attributes that make up the
domain location of the LDAP entry, where each attribute is separated
from the next attribute using a period.

Note: The domain-based reference name can only be used when the
LDAP directory that has the Info*Engine entries is constructed using
dc=com as a root-level directory or when the Naming Service
.serviceDomainBase property is set to include those attributes beyond the
domain that are used in the distinguished name of the entry.

For example, if the ptcServiceName attribute value is
"com.myCompany.myHost.jdbcAdapter" and the entry is located in the
"dc=myHost,dc=myCompany,dc=com,ou=Applications,
o=myCompany" branch, then the following domain-based reference name
could only be used in the INSTANCE parameter if the
.serviceDomainBase property is set to "ou=Applications,o=myCompany":

<ie:param name="INSTANCE" data="com.myCompany.myHost.
jdbcAdapter@myHost.myCompany.com"/>

Use the Info*Engine Property Administrator to set the
.serviceDomainBase property. For more information, see the property
help in the Property Administrator.

Installing and Configuring the Adapter 2-21

JDBC Adapter Properties
The following JDBC adapter properties can be set for a JDBC adapter using
the Info*Engine Property Administrator JDBC adapter form. The properties
are listed alphabetically by the JDBC adapter form label, followed by the
property name in parenthesis:

Database Driver Class (drivers)
Specifies the name of the JDBC driver class. This is specific to the
database that the adapter will connect to. For example,
oracle.jdbc.driver.OracleDriver is the driver class for the Oracle Thin
Driver. For more information consult your driver manual.

Database Supports Auto Commit (autoCommitSupported)
Specifies whether or not the underlying database supports the auto-
commit facility, by taking a value true or false respectively. See the note
provided at the end of the section for more information.

Database Type (databaseType)
Specifies the type of database that the adapter connects to. If it is Oracle,
select "Oracle 8i" or "Oracle 9i" depending on what version of Oracle is in
use. If it is other than Oracle, select "Non Oracle".

Database URL (url)
Specifies the JDBC URL used to establish the connection. For example,
the URL for an Oracle Thin Driver could be in the following format:

jdbc:oracle:thin:@hostname:1521:databaseName

Database User (dbuser)
Specifies the default user used when making a connection to the
database.

Maximum Cache Size (maxContextCacheSize)
Specifies the maximum number of connections to cache. The default is
ten (10). Connection pooling is always active.

Maximum Context Age (maxContextAge)
Specifies the maximum time, in seconds, a connection will stay active if
not used. The default is sixty (60) seconds.

Maximum Query Size (maxQuerySize)
Specifies the maximum number of rows returned from a database query.
The default is 2000. Anything beyond the maximum is silently dropped
by the JDBC drivers.

Maximum Thread Count (socketAccess.maxThreadCount)
Specifies the maximum number of concurrent threads used by the JDBC
adapter. This value defaults to 5. Setting this value higher allows more
concurrent connections, but also requires more resources (memory and
CPU cycles).

2-22 JDBC Adapter Guide

Password (passwd)
Specifies the default password to use when making the connection to the
database.

Result Set Scrolling Capability (resultSetScrollingCapability)
Specifies the scrolling capability for result sets that are generated by way
of executing SQL queries. A value of "Default" provides for default
behaviour while a value of "TYPE_FORWARD_ONLY" allows the cursor
to move in the forward direction only, thereby rendering the result sets
unscrollable. The default is "Default".

Set this property to "TYPE_FORWARD_ONLY" only when the
underlying database provides for scrollable result sets by default and you
wish to make them unscrollable for some reason. For most databases,
such a setting is redundant since the default behaviour itself provides for
result sets that are unscrollable.

Secret (secret.text)
Specifies the secret used to sign and validate requests.

Secret 2 (secret.text2)
Specifies a string used to sign and validate requests to a task processor or
adapter. The secret.text2 property generates a more comprehensive
request signature than the secret.text property.

Secret Algorithm (secret.algorithm)
Specifies the algorithm used to encrypt secrets. Valid values for this
property are SHA-1 and MD5.

Use Database Auto Commit (autoCommit)
Specifies whether or not the auto-commit facility provided by the
underlying database is to be used, by taking a value true or false
respectively.

If autoCommitSupported is true, setting autoCommit to true/false would
mean that the auto-commit facility would be used/otherwise respectively.
If on the other hand, autoCommitSupported is false (meaning that the
underlying database does not support the auto-commit facility), the value
in autoCommit would be disregarded but the changes caused by the
execution of SQL statements would be explicitly committed.

Note: With Oracle as the database type, if the user sets
autoCommitSupported to an invalid value (say false), the property would be
set to true internally by the software. However, for other database types, it is
the user's responsibility to provide valid and consistent values for
autoCommitSupported and autoCommit through the Property Administrator.

JDBC Adapter Logging Capabilities
The logging capabilities available through the JDBC adapter are dependent
on whether you are running the adapter in process or out of process.

Installing and Configuring the Adapter 2-23

General information about JDBC adapter logging can be found in the
following sections. For additional information about logging, see the Property
Administrator help and the Windchill Info*Engine Administration and
Implementation Guide.

In-process Adapter Logging Capabilities
When you are running the JDBC adapter in-process, whether a log file of a
given type is created is determined by the logging options associated with the
servlet or server. The servlet log files are used when the adapter webjects are
in a JSP and the server log files are used when the adapter webjects are in a
task. For example, if in the Logging section of the servlet LDAP entry form
the Debug and Information fields are set to true, and all other logging
fields are false, only the following files are created:

<service_name>_debug.log
<service_name>_info.log

where <service_name> is the name of the service corresponding to the servlet.

The default location for the log files is <ie_dir>/logs (where <ie_dir> is the
directory where Info*Engine is installed); however, the location can be
changed to any other existing location using the Property Administrator.
With the above settings, the debug and information messages that are
specific to the adapter when it is called from a JSP are written to the
corresponding files along with debug and information messages for the
servlet.

The logging options associated with the adapter have no effect on the logging
behavior when the adapter is running in process. For example, if Debug is
set to true on the Property LDAP entry form for the servlet (or the server)
but is set to false on the Property LDAP entry form for the adapter, the
debug messages of the adapter are still written to the debug log file.

Out-of-process Adapter Logging Capabilities
When running the JDBC adapter out of process, whether a log file of a given
type is created is determined by the logging options associated with the
adapter. These options can be specified on the Property LDAP form for the
adapter. For example, if you set Debug and Information to true, and all
other options to false, only the following files are created:

<adapter_service_name>_debug.log
<adapter_service_name>_info.log

where <adapter_service_name> is the runtime service name of the out-of-
process adapter. The default location for these files is the directory from
which you started the adapter, but can be changed to any other existing
location using the Property Administrator. With the above settings, the
debug and information messages that are specific to the adapter are written
to the corresponding files.

 3-1

3
The Webject Library

This chapter describes the webjects that are available through the JDBC
adapter. Each webject description includes the syntax, parameters, and in
most cases, an example.

For further examples of the use of JDBC adapter webjects, see the Custom
Applications chapter of the Info*Engine User's Guide.

Topic Page

Webject Library Overview ..3-2
Processing BLOBs ...3-2

Running the Webject Examples ...3-2

Batch-Execute-Procedure..3-4

Create-Object ...3-11

Delete-Objects..3-15
Describe-Attributes ...3-18
Do-SQL...3-21
Execute-Procedure...3-25
Prepared-Batch-Update ..3-34
Put-Clob-Stream..3-48
Query-Objects ..3-58
Send-Blob-Stream..3-62
Send-Clob-Stream..3-74

Transaction ..3-80

Update-Objects ..3-90

Validate-User...3-94

3-2 JDBC Adapter Guide

Webject Library Overview
The action and query webjects valid for the JDBC adapter are detailed in the
following sections.

Because display and group webjects are available for all adapters, they are
described in the Info*Engine User's Guide.

In tables at the beginning of the parameter descriptions, the parameters are
categorized as being either Required, Select, or Optional:

• A parameter is listed in the Required column when it is always required.

• A parameter is listed in the Select column when there is a relationship
between the specified parameter and another parameter. For example,
the SORTED and SORTBY parameters of the Query-Attributes webject
are Select because if you specify the SORTED parameter, you must also
specify the SORTBY parameter.

A parameter is also listed in the Select column when its specification
depends on the context in which the webject is being executed. For
example, in the Put-Blob-Stream webject, the FILENAME parameter
must be specified if no file was uploaded through the browser.

• A parameter is listed in the Optional column when it is always optional
and when it is not related to another parameter.

Processing BLOBs
It is possible to control how BLOBs are processed by the adapter webjects.
The BLOB_COUNT parameter can be included on any JDBC adapter
webject. This parameter controls how BLOBs are consumed by specifying
how many BLOBs should be delivered to the adapter webject. You can specify
a value of 0 when no BLOBs should be delivered to the webject. If you omit
the BLOB_COUNT parameter, all remaining BLOBs are delivered to the
webject.

The Webject Library 3-3

Running the Webject Examples
Performing a Typical installation of the JDBC adapter on the same host
where Info*Engine is installed causes certain example JSP and XML task
files to be installed on your system. The JSP files get installed under
<ie_dir>\codebase\infoengine\jsp\examples\JDBCAdapter\examples while
the XML task files get installed under
<ie_dir>\tasks\infoengine\examples\JDBCAdapter\example-tasks, where
<ie_dir> is the Info*Engine installation directory. Performing a JDBC
adapter installation on a host different from the Info*Engine host places the
examples in the JDBC installation directory; you must manually copy the
examples to an appropriate location under the Info*Engine installation
directory as seen in the paths above.

To run the examples on your system, complete the following procedure:

1. Build the demo database by running the BuildDemoDb.jsp file. Use the
following URL:

http://hostname/Windchill/infoengine/jsp/examples/JDBCAdapter/exa
mples/BuildDemoDb.jsp

This file builds and populates the demo database which the examples run
against.

2. Replace the values of the INSTANCE, DBUSER and PASSWD webject
parameters in the JSP files with values appropriate to your installation.

3. Run the JSP files in the examples directory by using the following URL:

http://hostname/Windchill/infoengine/jsp/examples/JDBCAdapter/exa
mples/JDBC.jsp

where hostname is the name of the system where Info*Engine is
installed, and JDBC.jsp is the name of the JSP example file to be run.

3-4 JDBC Adapter Guide

Batch-Execute-Procedure
Description

Executes an SQL stored procedure for multiple sets of input parameter
values.

Syntax
<ie:webject name="Batch-Execute-Procedure" type="ACT">
 <ie:param name="BLOB_COUNT" data="number_of_BLOBs"/>
 <ie:param name="CONNECTION_ATTEMPT_INTERVAL" data="interval"/>
 <ie:param name="CONNECTION_ATTEMPTS" data="attempts"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="FIELD" data="input_data"/>
 <ie:param name="GROUP_OUT" data="group_out"/>
 <ie:param name="INSTANCE" data="instance"/>
 <ie:param name="PASSWD" data="dbuser_passwd"/>
 <ie:param name="SQL" data="procedure_call"/>
</ie:webject>

Parameters

Required Select Optional

FIELD BLOB_COUNT

INSTANCE CONNECTION_ATTEMPTS

SQL CONNECTION_ATTEMPT_INTERVAL

 DBUSER

 GROUP_OUT

 PASSWD

BLOB_COUNT
Specifies how many BLOBs to deliver to the webject. Specifying a value of 0
results in no BLOBs being delivered. Specifying a value of more than 0
results in up to that specified number of BLOBs being delivered. For
example, if this parameter is specified with a value of five (5), then no more
than five BLOBs will be delivered to the webject.

The default behavior for this parameter is that all remaining BLOBs are
delivered to the webject. This parameter is optional.

The Webject Library 3-5

CONNECTION_ATTEMPTS
Defines the maximum number of times to attempt establishing a connection
to an adapter before returning an error. The default value is 1. This
parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPTS defines the maximum number of times to
iterate through the list of adapter instances.

CONNECTION_ATTEMPT_INTERVAL
Defines the amount of time, in seconds, to delay between connection
attempts. The default value is 60 seconds. This parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPT_INTERVAL defines the number of seconds to
wait between the attempts to iterate through the entire list of adapter
instances.

DBUSER
Specifies the name to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

FIELD
Specifies type and value information for a given IN argument to the stored
procedure. The value specified for this webject parameter will typically be of
the form:

<name>.<type>=<value>

where <name>, <type> and <value> are the name, the SQL type and the
value of the IN argument respectively. For ARRAY and STRUCT type
arguments however, there will be an SQL type name in addition to the type
itself (see the note provided at the end of the following page).

For a stored procedure that takes 'n' IN arguments, there will be 'n' such
FIELD entries defining an input set and there would typically be two or more
such input sets. Thus, if the stored procedure is to be executed for 'm' sets of
input parameter values as a batch, there will be (m x n) FIELD entries in the
webject.

This parameter is required.

GROUP_OUT
Identifies the group returned by the webject. This parameter is optional.

INSTANCE
Specifies the name of the adapter that executes the webject. Adapter names
are defined when the adapter is configured for use in your Info*Engine
environment. This parameter is required.

3-6 JDBC Adapter Guide

In order to provide the ability to connect to other adapters if a specific
adapter is not available, this parameter can be multi-valued. Info*Engine
attempts to connect to the adapters in the order given. If the first adapter
specified is not available, the next adapter listed is tried, and so on, until a
connection is made. If a connection cannot be established with any listed
adapter, an error is returned.

In conjunction with this parameter, you can include two other parameters,
CONNECTION_ATTEMPTS and CONNECTION_ATTEMPT_INTERVAL.

PASSWD
Specifies the password to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

SQL
Specifies the signature of the call to the stored procedure. The value specified
for this webject parameter may typically be of the form:

<procedure_name>(in1, in2, in3, in4)

where <procedure_name> is the name of the stored procedure and in1, in2,
in3 and in4 are the IN arguments to the procedure.

This parameter is required.

Note:

1. The webject provides support for ARRAY and STRUCT type IN
arguments only when the underlying database type is Oracle. Executing
the webject for ARRAY or STRUCT type IN arguments for database types
other than Oracle would result in an exception getting thrown.

2. For ARRAY and STRUCT type IN arguments, the value specified for the
webject parameter FIELD will be of the form:

<name>.<type>.<type_name>=<value>

where <name> is the name of the IN argument, <type> is either ARRAY
or STRUCT, <type_name> is the SQL type name and <value> is a comma
separated set of either ARRAY elements or STRUCT attribute values.

3. The case associated with any of the specified SQL types is not important,
but that associated with any of the SQL type names is (relevant for
ARRAY and STRUCT types).

4. Values specified for VARCHAR type IN arguments are to be enclosed
within single quotes.

The Webject Library 3-7

5. Values specified for DATE type IN arguments must be of the form 'dd-
<month_name>-yyyy' where <month_name> is either the first three
characters of the given month's name or its full name. The value may be
optionally enclosed within single quotes.

You can also specify either of the following for the DATE type IN
argument if you are connecting to an Oracle database:

– sysdate, which uses the system date as defined on the computer in
use

– An empty string ('')

An empty string passes the date as is to the stored procedure being
executed. For example, when passing this to a procedure that inserts
table rows, a NULL value is inserted into the DATE type column
(assuming the table allows it).

6. Values specified for TIME type IN arguments must be of the form
'hh:mm:ss'.

7. A null value may be specified for a given IN argument by specifying
NULL as its value.

8. The value specified for the webject parameter SQL must be the signature
of a stored procedure that does not have OUT or INOUT arguments and
that returns a simple update count. If any of these conditions are
violated, an exception will be thrown upon executing the webject.

3-8 JDBC Adapter Guide

Example
The following example documents the BatchExecuteProcedure.jsp file, which
is located in the
<ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples directory.
It illustrates the Batch-Execute-Procedure webject for standard SQL types.

<%@page language="java" session="false" errorPage="IEError.jsp"%>
<%@taglib uri="http://www.ptc.com/infoengine/taglib/core" prefix="ie"%>
<html>
<head><title>Batch-Execute-Procedure Webject</title>
<BASE>
</head>
<body bgcolor="#AABBCC">
<h1>Batch-Execute-Procedure webject: </h1>
<h3>Executes an SQL stored procedure for multiple input sets as a batch</h3>

 <ie:webject name="Batch-Execute-Procedure" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}" default="jdbcAdapter"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="PASSWD" data="dbuser_passwd"/>

 <ie:param name="FIELD" data="INP_EMPNO.INTEGER=8000"/>
 <ie:param name="FIELD" data="INP_JOB.VARCHAR='SR. CLERK'"/>
 <ie:param name="FIELD" data="INP_MGR.INTEGER=7566"/>
 <ie:param name="FIELD" data="INP_HD.DATE='14-Jan-2002'"/>
 <ie:param name="FIELD" data="INP_SAL.INTEGER=1000"/>
 <ie:param name="FIELD" data="INP_DN.INTEGER=20"/>

 <ie:param name="FIELD" data="INP_EMPNO.INTEGER=8001"/>
 <ie:param name="FIELD" data="INP_JOB.VARCHAR='SR. CLERK'"/>
 <ie:param name="FIELD" data="INP_MGR.INTEGER=7566"/>
 <ie:param name="FIELD" data="INP_HD.DATE='24-Jun-2002'"/>
 <ie:param name="FIELD" data="INP_SAL.INTEGER=950"/>
 <ie:param name="FIELD" data="INP_DN.INTEGER=20"/>

 <ie:param name="FIELD" data="INP_EMPNO.INTEGER=8002"/>
 <ie:param name="FIELD" data="INP_JOB.VARCHAR='SR. CLERK'"/>
 <ie:param name="FIELD" data="INP_MGR.INTEGER=7566"/>
 <ie:param name="FIELD" data="INP_HD.DATE='30-Dec-2002'"/>
 <ie:param name="FIELD" data="INP_SAL.INTEGER=900"/>
 <ie:param name="FIELD" data="INP_DN.INTEGER=20"/>

 <ie:param name="SQL" data="UPDATE_EMP_RECORD(INP_EMPNO, INP_JOB, INP_MGR,
INP_HD, INP_SAL, INP_DN)"/>
 </ie:webject>

</body>
</html>

Clearly, the above example would execute the SQL stored procedure called
UPDATE_EMP_RECORD for 3 different sets of input parameter values. The
3 input sets have been shown as separate blocks in the above example for
clarity. Each set consists of 6 FIELD entries, which provide type and value
information for the 6 IN arguments to the stored procedure.

The Webject Library 3-9

Besides standard types, the webject provides support for ARRAY and
STRUCT type IN arguments. The following example documents the
BatchExecuteProcArray.jsp file, which is located in the
<ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples directory.
It illustrates batch execution of a stored procedure that takes ARRAY type IN
arguments.

<%@page language="java" session="false" errorPage="IEError.jsp"%>
<%@taglib uri="http://www.ptc.com/infoengine/taglib/core" prefix="ie"%>
<html>
<head><title> Batch-Execute-Procedure Webject </title>
<BASE>
</head>
<body bgcolor="#AABBCC">
<h1> Batch-Execute-Procedure webject: </h1>
<h3>Executes an SQL stored procedure for multiple input sets as a batch.</h3>
<h3>Illustrates batch execution for ARRAY type parameters.</h3>

 <ie:webject name="Batch-Execute-Procedure" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}" default="jdbcAdapter"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="PASSWD" data="dbuser_passwd"/>

 <ie:param name="FIELD" data="INP_NUM.INTEGER=1"/>
 <ie:param name="FIELD" data="INP_ARRAY1.ARRAY.INT_ARRAY=(10, 20, 30)"/>
 <ie:param name="FIELD" data="INP_ARRAY2.ARRAY.REAL_ARRAY=(12.3, 23.4,
34.5)"/>
 <ie:param name="FIELD"
data="INP_ARRAY3.ARRAY.STRING_ARRAY=('A','SAMPLE','STRING')"/>
 <ie:param name="FIELD"
data="INP_ARRAY4.ARRAY.ADDRESS_ARRAY=(ADDRESS('SCIOTO',101),ADDRESS('ST.
MARY',254))"/>

 <ie:param name="FIELD" data="INP_NUM.INTEGER=2"/>
 <ie:param name="FIELD" data="INP_ARRAY1.ARRAY.INT_ARRAY=(40, 50, 60)"/>
 <ie:param name="FIELD" data="INP_ARRAY2.ARRAY.REAL_ARRAY=(43.4, 56.7,-
67.8)"/>
 <ie:param name="FIELD"
data="INP_ARRAY3.ARRAY.STRING_ARRAY=('ANOTHER','SAMPLE','STRING')"/>
 <ie:param name="FIELD"
data="INP_ARRAY4.ARRAY.ADDRESS_ARRAY=(ADDRESS('PATRICK',124),ADDRESS('ST.
JOHN',22))"/>

 <ie:param name="FIELD" data="INP_NUM.INTEGER=3"/>
 <ie:param name="FIELD" data="INP_ARRAY1.ARRAY.INT_ARRAY=(-70, 80, -90)"/>
 <ie:param name="FIELD" data="INP_ARRAY2.ARRAY.REAL_ARRAY=(-72.3, 83.4,-
94.5)"/>
 <ie:param name="FIELD"
data="INP_ARRAY3.ARRAY.STRING_ARRAY=('YET','ANOTHER','SAMPLE','STRING')"/>
 <ie:param name="FIELD"
data="INP_ARRAY4.ARRAY.ADDRESS_ARRAY=(ADDRESS('PARKER',6),ADDRESS('BISHAN',11))"/>

 <ie:param name="SQL" data="UPDATE_VARRAY_EXAMPLE2(INP_NUM, INP_ARRAY1,
INP_ARRAY2, INP_ARRAY3, INP_ARRAY4)"/>
 </ie:webject>

</body>
</html>

3-10 JDBC Adapter Guide

And the following example documents the BatchExecuteProcStruct.jsp file,
which is located in the
<ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples directory.
It illustrates batch execution of a stored procedure that takes a STRUCT type
IN argument.

<%@page language="java" session="false" errorPage="IEError.jsp"%>
<%@taglib uri="http://www.ptc.com/infoengine/taglib/core" prefix="ie"%>
<html>
<head><title>Batch-Execute-Procedure Webject</title>
<BASE>
</head>
<body bgcolor="#AABBCC">
<h1>Batch-Execute-Procedure webject: </h1>
<h3>Executes an SQL stored procedure for multiple input sets as a batch.</h3>

<h3>Illustrates batch execution for STRUCT type parameters.</h3>

 <ie:webject name="Batch-Execute-Procedure" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}" default="jdbcAdapter"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="PASSWD" data="dbuser_passwd"/>
 <ie:param name="FIELD" data="INP_EMPNO.INTEGER=101"/>
 <ie:param name="FIELD" data="INP_EMPID.STRUCT.PERSON=('GREG',ADDRESS('VAN
NESS',345))"/>
 <ie:param name="FIELD" data="INP_EMPNO.INTEGER=102"/>
 <ie:param name="FIELD"
data="INP_EMPID.STRUCT.PERSON=('PATTERSON',ADDRESS('GEARY',412))"/>
 <ie:param name="FIELD" data="INP_EMPNO.INTEGER=103"/>
 <ie:param name="FIELD"
data="INP_EMPID.STRUCT.PERSON=('MATHEWS',ADDRESS('BURNTSTONES',169))"/>
 <ie:param name="SQL" data="UPDATE_PEOPLE_RECORD(INP_EMPNO, INP_EMPID)"/>
 </ie:webject>

</body>
</html>

The Webject Library 3-11

Create-Object
Description

Creates database objects by adding records to a table.

Syntax
<ie:webject name="Create-Object" type="ACT">
 <ie:param name="BLOB_COUNT" data="number_of_BLOBs"/>
 <ie:param name="CLASS" data="class"/>
 <ie:param name="CONNECTION_ATTEMPT_INTERVAL" data="interval"/>
 <ie:param name="CONNECTION_ATTEMPTS" data="attempts"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="FIELD" data="field"/>
 <ie:param name="GROUP_OUT" data="group_out"/>
 <ie:param name="INSTANCE" data="instance"/>
 <ie:param name="PASSWD" data="dbpassword"/>
</ie:webject>

Parameters

Required Select Optional

CLASS BLOB_COUNT

FIELD CONNECTION_ATTEMPTS

INSTANCE CONNECTION_ATTEMPT_INTERVAL

 DBUSER

 GROUP_OUT

 PASSWD

BLOB_COUNT
Specifies how many BLOBs to deliver to the webject. Specifying a value of 0
results in no BLOBs being delivered. Specifying a value of more than 0
results in up to that specified number of BLOBs being delivered. For
example, if this parameter is specified with a value of five (5), then no more
than five BLOBs will be delivered to the webject.

The default behavior for this parameter is that all remaining BLOBs are
delivered to the webject. This parameter is optional.

CLASS
Specifies the name of the table in which you are creating records. This
parameter is required.

3-12 JDBC Adapter Guide

CONNECTION_ATTEMPTS
Defines the maximum number of times to attempt establishing a connection
to an adapter before returning an error. The default value is 1. This
parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPTS defines the maximum number of times to
iterate through the list of adapter instances.

CONNECTION_ATTEMPT_INTERVAL
Defines the amount of time, in seconds, to delay between connection
attempts. The default value is 60 seconds. This parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPT_INTERVAL defines the number of seconds to
wait between the attempts to iterate through the entire list of adapter
instances.

DBUSER
Specifies the name to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

FIELD
Specifies the attribute values to be added. The value for this parameter is
specified in the following manner:

name='value'

where name is the object attribute name, and value is the value to store in
the attribute. The value portion of the parameter value must be enclosed in
single quotes. Multiple values can be specified for this parameter. This
parameter is required.

GROUP_OUT
Identifies the group returned by the webject. This parameter is optional.

The Webject Library 3-13

INSTANCE
Specifies the name of the adapter that executes the webject. Adapter names
are defined when the adapter is configured for use in your Info*Engine
environment. This parameter is required.

In order to provide the ability to connect to other adapters if a specific
adapter is not available, this parameter can be multi-valued. Info*Engine
attempts to connect to the adapters in the order given. If the first adapter
specified is not available, the next adapter listed is tried, and so on, until a
connection is made. If a connection cannot be established with any listed
adapter, an error is returned.

In conjunction with this parameter, you can include two other parameters,
CONNECTION_ATTEMPTS and CONNECTION_ATTEMPT_INTERVAL.

PASSWD
Specifies the password to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

3-14 JDBC Adapter Guide

Example
The following example documents the CreateObject.jsp file, which is located
in the <ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples
directory.

In this example, a new employee record is created in the EMP table,
including the employee number, name, job title, manager, date of hire, salary,
and department. The database is then queried and the newly created record
is displayed using the Query-Objects and Display-Table webjects
respectively.

Note: To run this example on your own system, you need to replace the
values of the INSTANCE, DBUSER and PASSWD parameters with values
appropriate to your installation.

<%@page language="java" session="false"
 errorPage="IEError.jsp"%>
<%@taglib uri="http://www.ptc.com/infoengine/taglib/core"
 prefix="ie"%>

<html>
<head><title>Create-Object Webject</title>
<BASE>
</head>
<body>

<h1>Create-Object webject: </h1>
<h3>Creates database objects by adding records to a table</h3>

<ie:webject name="Create-Object" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
 default="jdbcAdapter"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="PASSWD" data="dbuser_passwd"/>
 <ie:param name="CLASS" data="EMP"/>
 <ie:param name="FIELD" data="EMPNO='1110'"/>
 <ie:param name="FIELD" data="ENAME='Herman'"/>
 <ie:param name="FIELD" data="JOB='ENGINEER'"/>
 <ie:param name="FIELD" data="MGR='7990'"/>
 <ie:param name="FIELD" data="HIREDATE='23-MAY-1999'"/>
 <ie:param name="FIELD" data="SAL='2200'"/>
 <ie:param name="FIELD" data="COMM=''"/>
 <ie:param name="FIELD" data="DEPTNO='40'"/>
 <ie:param name="GROUP_OUT" data="createObject"/>
</ie:webject>

<ie:webject name="Query-Objects" type="OBJ">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
 default="jdbcAdapter"/>
 <ie:param name="CLASS" data="EMP"/>
 <ie:param name="WHERE" data="()"/>
 <ie:param name="GROUP_OUT" data="emp"/>
</ie:webject>

<ie:webject name="Display-Table" type="DSP"/>

</body>
</html>

The Webject Library 3-15

Delete-Objects
Description

Deletes database objects by deleting records from a table.

Syntax
<ie:webject name="Delete-Objects" type="ACT">
 <ie:param name="BLOB_COUNT" data="number_of_BLOBs"/>
 <ie:param name="CLASS" data="class"/>
 <ie:param name="CONNECTION_ATTEMPT_INTERVAL" data="interval"/>
 <ie:param name="CONNECTION_ATTEMPTS" data="attempts"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="GROUP_OUT" data="group_out"/>
 <ie:param name="INSTANCE" data="instance"/>
 <ie:param name="PASSWD" data="dbpassword"/>
 <ie:param name="WHERE" data="where_clause"/>
</ie:webject>

Parameters

Required Select Optional

CLASS BLOB_COUNT

INSTANCE CONNECTION_ATTEMPTS

WHERE CONNECTION_ATTEMPT_INTERVAL

 DBUSER

 GROUP_OUT

 PASSWD

BLOB_COUNT
Specifies how many BLOBs to deliver to the webject. Specifying a value of 0
results in no BLOBs being delivered. Specifying a value of more than 0
results in up to that specified number of BLOBs being delivered. For
example, if this parameter is specified with a value of five (5), then no more
than five BLOBs will be delivered to the webject.

The default behavior for this parameter is that all remaining BLOBs are
delivered to the webject. This parameter is optional.

CLASS
Specifies the name of the table from which you wish to delete objects. This
parameter is required.

3-16 JDBC Adapter Guide

CONNECTION_ATTEMPTS
Defines the maximum number of times to attempt establishing a connection
to an adapter before returning an error. The default value is 1. This
parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPTS defines the maximum number of times to
iterate through the list of adapter instances.

CONNECTION_ATTEMPT_INTERVAL
Defines the amount of time, in seconds, to delay between connection
attempts. The default value is 60 seconds. This parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPT_INTERVAL defines the number of seconds to
wait between the attempts to iterate through the entire list of adapter
instances.

DBUSER
Specifies the name to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

GROUP_OUT
Identifies the group returned by the webject. This parameter is optional.

INSTANCE
Specifies the name of the adapter that executes the webject. Adapter names
are defined when the adapter is configured for use in your Info*Engine
environment. This parameter is required.

In order to provide the ability to connect to other adapters if a specific
adapter is not available, this parameter can be multi-valued. Info*Engine
attempts to connect to the adapters in the order given. If the first adapter
specified is not available, the next adapter listed is tried, and so on, until a
connection is made. If a connection cannot be established with any listed
adapter, an error is returned.

In conjunction with this parameter, you can include two other parameters,
CONNECTION_ATTEMPTS and CONNECTION_ATTEMPT_INTERVAL.

PASSWD
Specifies the password to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

The Webject Library 3-17

WHERE
Specifies search criteria for the database objects to delete. The value for this
parameter is specified as an SQL formatted where clause. This parameter is
required.

Example
The following example documents the DeleteObjects.jsp file, which is located
in the <ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples
directory.

In this example, the database record including the ENAME attribute value of
Herman is deleted from the EMP table. The database is then queried and the
updated EMP table is displayed using the Query-Objects and Display-Table
webjects respectively.

Note: To run this example on your own system, you need to replace the
values of the INSTANCE, DBUSER and PASSWD parameters with values
appropriate to your installation.

<%@page language="java" session="false"
 errorPage="IEError.jsp"%>
<%@taglib uri="http://www.ptc.com/infoengine/taglib/core"
 prefix="ie"%>

<html>
<head><title>Delete-Objects Webject</title>
<BASE>
</head>
<body>

<h1>Delete-Objects webject: </h1>
<h3>Delete database objects by removing records from a
Table</h3>

<ie:webject name="Delete-Objects" type="ACT">
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="PASSWD" data="dbuser_passwd"/>
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
 default="jdbcAdapter"/>
 <ie:param name="CLASS" data="${@FORM[]table[]}"
 default="EMP"/>
 <ie:param name="WHERE" data="${@FORM[]where[]}"
 default="ENAME='Herman'"/>
 <ie:param name="GROUP_OUT" data="DeleteObject"/>
</ie:webject>

<ie:webject name="Query-Objects" type="OBJ">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
 default="jdbcAdapter"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="PASSWD" data="dbuser_passwd"/>
 <ie:param name="CLASS" data="${@FORM[]table[]}"
 default="EMP"/>
 <ie:param name="WHERE" data="()"/>
 <ie:param name="GROUP_OUT" data="employees"/>
</ie:webject>

<ie:webject name="Display-Table" type="DSP"/>

</body>
</html>

3-18 JDBC Adapter Guide

Describe-Attributes
Description

Describes the attribute (or column) definition detail of the specified database
table.

Syntax
<ie:webject name="Describe-Attributes" type="OBJ">
 <ie:param name="BLOB_COUNT" data="number_of_BLOBs"/>
 <ie:param name="CLASS" data="class"/>
 <ie:param name="CONNECTION_ATTEMPT_INTERVAL" data="interval"/>
 <ie:param name="CONNECTION_ATTEMPTS" data="attempts"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="GROUP_OUT" data="group"/>
 <ie:param name="INSTANCE" data="instance"/>
 <ie:param name="PASSWD" data="dbpassword"/>
</ie:webject>

Parameters

Required Select Optional

CLASS BLOB_COUNT

INSTANCE CONNECTION_ATTEMPTS

 CONNECTION_ATTEMPT_INTERVAL

 DBUSER

 GROUP_OUT

 PASSWD

BLOB_COUNT
Specifies how many BLOBs to deliver to the webject. Specifying a value of 0
results in no BLOBs being delivered. Specifying a value of more than 0
results in up to that specified number of BLOBs being delivered. For
example, if this parameter is specified with a value of five (5), then no more
than five BLOBs will be delivered to the webject.

The default behavior for this parameter is that all remaining BLOBs are
delivered to the webject. This parameter is optional.

CLASS
Specifies the name of the table whose attribute definition detail is being
described. This parameter is required.

The Webject Library 3-19

CONNECTION_ATTEMPTS
Defines the maximum number of times to attempt establishing a connection
to an adapter before returning an error. The default value is 1. This
parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPTS defines the maximum number of times to
iterate through the list of adapter instances.

CONNECTION_ATTEMPT_INTERVAL
Defines the amount of time, in seconds, to delay between connection
attempts. The default value is 60 seconds. This parameter is optional.

If multiple Instance parameter values are specified, the value of
CONNECTION_ATTEMPT_INTERVAL defines the number of seconds to
wait between the attempts to iterate through the entire list of adapter
instances.

DBUSER
Specifies the name to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

GROUP_OUT
Identifies the group returned by the webject. Use this name as the
GROUP_IN parameter value of a display webject. This parameter is optional.

INSTANCE
Specifies the name of the adapter that executes the webject. Adapter names
are defined when the adapter is configured for use in your Info*Engine
environment. This parameter is required.

In order to provide the ability to connect to other adapters if a specific
adapter is not available, this parameter can be multi-valued. Info*Engine
attempts to connect to the adapters in the order given. If the first adapter
specified is not available, the next adapter listed is tried, and so on, until a
connection is made. If a connection cannot be established with any listed
adapter, an error is returned.

In conjunction with this parameter, you can include two other parameters,
CONNECTION_ATTEMPTS and CONNECTION_ATTEMPT_INTERVAL.

PASSWD
Specifies the password to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

3-20 JDBC Adapter Guide

Example
The following example documents the DescribeAttributes.jsp file, which is
located in the
<ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples directory.

In this example, the column definition detail is requested for the EMP table.
The definition detail is then displayed using the Display-Table webject.

Note: To run this example on your own system, you need to replace the
values of the INSTANCE, DBUSER and PASSWD parameters with values
appropriate to your installation.

<%@page language="java" session="false"
 errorPage="IEError.jsp"%>
<%@taglib uri="http://www.ptc.com/infoengine/taglib/core"
 prefix="ie"%>

<html>
<head><title>Describe-Attributes Webject</title>
<BASE>
</head>
<body>

<h1>Describe-Attributes webject: </h1>
<h3>Describe the attribute or column definition details</h3>

<ie:webject name="Describe-Attributes" type="OBJ">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
 default="jdbcAdapter"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="PASSWD" data="dbuser_passwd"/>
 <ie:param name="CLASS" data="${@FORM[]table[]}"
 default="EMP"/>
 <ie:param name="GROUP_OUT" data="DescribeAttribute"/>
</ie:webject>

<ie:webject name="Display-Table" type="DSP"/>

</body>
</html>

The Webject Library 3-21

Do-SQL
Description

Executes one or more general SQL statements either individually or as a
batch. Do-SQL is a general-purpose webject. It can be used both as a query
and an action webject.

Syntax
<ie:webject name="Do-SQL" type="ACT">
 <ie:param name="BLOB_COUNT" data="number_of_BLOBs"/>
 <ie:param name="CONNECTION_ATTEMPT_INTERVAL" data="interval"/>
 <ie:param name="CONNECTION_ATTEMPTS" data="attempts"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="GROUP_OUT" data="group_out"/>
 <ie:param name="INSTANCE" data="instance"/>
 <ie:param name="MAX_QUERY_SIZE" data="max_query_size"/>
 <ie:param name="MODE" data="mode_of_execution"/>
 <ie:param name="PASSWD" data="dbpassword"/>
 <ie:param name="SQL" data="an_SQL_statement"/>
</ie:webject>

Parameters

Required Select Optional

INSTANCE BLOB_COUNT

SQL CONNECTION_ATTEMPTS

 CONNECTION_ATTEMPT_INTERVAL

 DBUSER

 GROUP_OUT

 MAX_QUERY_SIZE

 MODE

 PASSWD

BLOB_COUNT
Specifies how many BLOBs to deliver to the webject. Specifying a value of 0
results in no BLOBs being delivered. Specifying a value of more than 0
results in up to that specified number of BLOBs being delivered. For
example, if this parameter is specified with a value of five (5), then no more
than five BLOBs will be delivered to the webject.

The default behavior for this parameter is that all remaining BLOBs are
delivered to the webject. This parameter is optional.

3-22 JDBC Adapter Guide

CONNECTION_ATTEMPTS
Defines the maximum number of times to attempt establishing a connection
to an adapter before returning an error. The default value is 1. This
parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPTS defines the maximum number of times to
iterate through the list of adapter instances.

CONNECTION_ATTEMPT_INTERVAL
Defines the amount of time, in seconds, to delay between connection
attempts. The default value is 60 seconds. This parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPT_INTERVAL defines the number of seconds to
wait between the attempts to iterate through the entire list of adapter
instances.

DBUSER
Specifies the name to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

GROUP_OUT
Identifies the group returned by the webject. This parameter is optional.

INSTANCE
Specifies the name of the adapter that executes the webject. Adapter names
are defined when the adapter is configured for use in your Info*Engine
environment. This parameter is required.

In order to provide the ability to connect to other adapters if a specific
adapter is not available, this parameter can be multi-valued. Info*Engine
attempts to connect to the adapters in the order given. If the first adapter
specified is not available, the next adapter listed is tried, and so on, until a
connection is made. If a connection cannot be established with any listed
adapter, an error is returned.

In conjunction with this parameter, you can include two other parameters,
CONNECTION_ATTEMPTS and CONNECTION_ATTEMPT_INTERVAL.

MAX_QUERY_SIZE
Specifies maximum number of objects returned from a database query. The
default for this parameter is 2000. If there are more than the maximum
number of objects, the JDBC driver silently drops the extra objects.
MAX_QUERY_SIZE is unused when MODE is set for batch execution. This
parameter is optional.

The Webject Library 3-23

MODE
Specifies the mode of execution and has relevance only when executing
multiple SQL commands. To run in batch mode, set this parameter to
"BATCH". If the parameter is not provided or if it is set to any value other
than "BATCH", the SQL commands (provided as values for the SQL webject
parameter) will get executed individually rather than as a batch. This
parameter is optional.

Note: The case associated with the value provided for the webject parameter
MODE is unimportant. Thus, the value can be "BATCH", "Batch", "batch" etc.

PASSWD
Specifies the password to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

SQL
Specifies the SQL statement to be executed. There can be multiple entries of
this webject parameter. When MODE is set for batch execution, this
parameter can only take an SQL update command (i.e., a command that
returns a simple update count) as its value. If this condition is violated, an
exception would be thrown upon executing the webject. However, there is no
such restriction for the normal mode of execution. This parameter is required.

Example
The following example documents the DoSql.jsp file, which is located in the
<ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples directory.
It illustrates the Do-Sql webject for the normal mode of execution.

In this example, the record including the ENAME attribute of ADAMS is
retrieved from the EMP table. The record is then displayed using the
Display-Table webject.

<%@page language="java" session="false"
 errorPage="IEError.jsp"%>
<%@taglib uri="http://www.ptc.com/infoengine/taglib/core"
 prefix="ie"%>

<html>
<head><title>Do-SQL Webject</title>
<BASE>
</head>
<body>

<h1>Do-SQL webject: </h1>
<h3>Performs a general SQL statement</h3>

3-24 JDBC Adapter Guide

<ie:webject name="Do-SQL" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
 default="jdbcAdapter"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="PASSWD" data="dbuser_passwd"/>
 <ie:param name="SQL" data="SELECT * FROM EMP WHERE
 (ENAME='ADAMS')"/>
 <ie:param name="GROUP_OUT" data="DoSql"/>
</ie:webject>

<ie:webject name="Display-Table" type="DSP"/>

</body>
</html>

The following example documents the BatchUpdate.jsp file, which illustrates
the Do-Sql webject for the batch mode of execution. Running this example
inserts 3 additional rows to the table EMP by executing the SQL update
commands (provided as values for the SQL webject parameter) as a batch.

<%@page language="java" session="false"
errorPage="IEError.jsp"%>
<%@taglib uri="http://www.ptc.com/infoengine/taglib/core"
prefix="ie"%>

<html>
<head><title>Do-SQL Webject</title>
<BASE>
</head>
<body bgcolor="#AABBCC">

<h1>Do-SQL webject: </h1>
<h3>Executes two or more SQL update commands as a batch</h3>

<ie:webject name="Do-SQL" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
 default="jdbcAdapter"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="PASSWD" data="dbuser_passwd"/>

 <ie:param name="SQL" data="INSERT INTO EMP VALUES
(8000,'John','CLERK',7902,'11-JAN-1999',800,NULL,20)"/>

 <ie:param name="SQL" data="INSERT INTO EMP VALUES
(8001,'Jim','CLERK',7902,'21-JUN-1999',850,NULL,20)"/>

 <ie:param name="SQL" data="INSERT INTO EMP VALUES
(8002,'Jack','CLERK',7902,'27-DEC-1999',900,NULL,20)"/>

 <ie:param name="MODE" data="BATCH"/>

 <ie:param name="GROUP_OUT" data="BatchUpdate"/>
</ie:webject>

</body>
</html>

Note: To run the above examples on your own system, you need to replace
the values of the INSTANCE, DBUSER and PASSWD parameters with
values appropriate to your installation.

The Webject Library 3-25

Execute-Procedure
Description

Executes a stored procedure or function and returns any OUT or return
arguments. This is the only JDBC adapter webject that can return more than
one group.

This webject requires a procedure or function that has been previously stored
in a database which supports stored procedures. Refer to your database
documentation for a complete description of how to use stored procedures and
functions with your database.

Note: The webject provides support for multiple IN arguments, multiple
OUT arguments, as well as multiple IN OUT arguments. Besides, it provides
support for STRUCT and ARRAY type arguments.

Note: The webject is recommended for use with ARRAY and STRUCT type
arguments only when the underlying database type is Oracle.

Syntax
<ie:webject name="Execute-Procedure" type="ACT">
 <ie:param name="ATTRIBUTE" data="name.datatype"/>
 <ie:param name="BLOB_COUNT" data="number_of_BLOBs"/>
 <ie:param name="CONNECTION_ATTEMPT_INTERVAL" data="interval"/>
 <ie:param name="CONNECTION_ATTEMPTS" data="attempts"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="FIELD" data="data"/>
 <ie:param name="INSTANCE" data="instance"/>
 <ie:param name="PASSWD" data="dbpassword"/>
 <ie:param name="RETURN" data="datatype"/>
 <ie:param name="SQL" data="procedure_call"/>
</ie:webject>

Parameters

Required Select Optional

INSTANCE ATTRIBUTE BLOB_COUNT

SQL FIELD CONNECTION_ATTEMPTS

 RETURN CONNECTION_ATTEMPT_INTERVAL

 DBUSER

 PASSWD

3-26 JDBC Adapter Guide

ATTRIBUTE
Specifies an OUT argument to the stored procedure. The value for this
parameter will typically be of the form:

name.datatype

where name and datatype are the name and SQL type of the OUT argument
respectively. The name is used in the value specified for the SQL parameter.
The following is a list of possible data types:

ARRAY DOUBLE REAL

BIGINT FLOAT SMALLINT

BINARY INTEGER STRUCT

BIT LONGVARBINARY TIME

CHAR LONGVARCHAR TIMESTAMP

CURSOR NULL TINYINT

DATE NUMERIC VARBINARY

DECIMAL OTHER VARCHAR

If there are multiple OUT arguments to the stored procedure, each OUT
argument results in an output group that contains the value of the argument
obtained by executing the procedure. The name of the resulting group is the
same as the value specified for the ATTRIBUTE parameter. For example,
consider the following ATTRIBUTE parameter specifications:

<ie:param name="ATTRIBUTE" data="sal.NUMBER"/>
<ie:param name="ATTRIBUTE" data="deptno.NUMBER"/>

Executing the procedure results in two output groups named sal.NUMBER
and deptno.NUMBER being created. These group names can then be
specified as GROUP_IN parameter values in a display webject.

To pass an IN OUT argument to the stored function or procedure using this
webject, the argument name must be specified in both the ATTRIBUTE and
FIELD parameters.

The ATTRIBUTE parameter can be multi-valued. The number of values
specified will depend on the number of IN OUT and OUT arguments passed
to the stored procedure.

Note: For ARRAY and STRUCT type arguments, the value specified for this
parameter will be of the form:

<name>.<datatype>.<type_name>

where <name> is the name of the argument, <datatype> is either ARRAY or
STRUCT and <type_name> is the SQL type name associated with the ARRAY
or STRUCT type argument.

BLOB_COUNT
Specifies how many BLOBs to deliver to the webject. Specifying a value of 0
results in no BLOBs being delivered. Specifying a value of more than 0
results in up to that specified number of BLOBs being delivered. For

The Webject Library 3-27

example, if this parameter is specified with a value of five (5), then no more
than five BLOBs will be delivered to the webject.

The default behavior for this parameter is that all remaining BLOBs are
delivered to the webject. This parameter is optional.

CONNECTION_ATTEMPTS
Defines the maximum number of times to attempt establishing a connection
to an adapter before returning an error. The default value is 1. This
parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPTS defines the maximum number of times to
iterate through the list of adapter instances.

CONNECTION_ATTEMPT_INTERVAL
Defines the amount of time, in seconds, to delay between connection
attempts. The default value is 60 seconds. This parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPT_INTERVAL defines the number of seconds to
wait between the attempts to iterate through the entire list of adapter
instances.

DBUSER
Specifies the name to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

FIELD
Specifies an IN argument to the stored procedure. The value for this
parameter is typically of the form:

name.type=value

where name, type, and value are the name, SQL type and value of the IN
argument respectively.

To pass an IN OUT argument to the stored function or procedure using this
webject, the argument name must be specified in both the ATTRIBUTE and
FIELD parameters.

The FIELD parameter can be multi-valued. The number of values specified
will depend on the number of IN and IN OUT arguments passed to the
procedure.

Note: For ARRAY and STRUCT type IN arguments, the value specified for
this parameter will be of the form:

<name>.<type>.<type_name>=<value>

where <name> is the name of the IN argument, <type> is either ARRAY or
STRUCT, <type_name> is the SQL type name associated with the ARRAY or

3-28 JDBC Adapter Guide

STRUCT type argument and <value> is a comma separated set of either
ARRAY elements or STRUCT attribute values.

INSTANCE
Specifies the name of the adapter that executes the webject. Adapter names
are defined when the adapter is configured for use in your Info*Engine
environment. This parameter is required.

In order to provide the ability to connect to other adapters if a specific
adapter is not available, this parameter can be multi-valued. Info*Engine
attempts to connect to the adapters in the order given. If the first adapter
specified is not available, the next adapter listed is tried, and so on, until a
connection is made. If a connection cannot be established with any listed
adapter, an error is returned.

In conjunction with this parameter, you can include two other parameters,
CONNECTION_ATTEMPTS and CONNECTION_ATTEMPT_INTERVAL.

PASSWD
Specifies the password to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

RETURN
Specifies the data type of the value returned by the stored function. The
following is a list of possible data types:

ARRAY DOUBLE REAL

BIGINT FLOAT SMALLINT

BINARY INTEGER TIME

BIT LONGVARBINARY TIMESTAMP

CHAR LONGVARCHAR TINYINT

CURSOR NULL VARBINARY

DATE NUMERIC VARCHAR

DECIMAL OTHER

This parameter is required only if the webject is executing a stored function.
If this parameter is specified when the webject is executing a stored
procedure, then an error is returned.

SQL
The SQL parameter describes the signature of the call. The names defined in
the FIELD and ATTRIBUTE parameters are used here. The value for this
parameter is typically of the form:

proc(in, in_out, out)

The Webject Library 3-29

where proc is the name of the stored procedure or stored function and in,
in_out and out are the IN, IN OUT and OUT arguments respectively of the
stored procedure.

If there are no IN OUT arguments to the stored procedure, the number of
FIELD and ATTRIBUTE parameter values should equal the number of IN
and OUT arguments (respectively) specified in the SQL parameter. For
example, consider the following webject parameter specifications:

<ie:param name=FIELD data="in1.varchar='first in'"/>
<ie:param name=FIELD data="in2.varchar='second in'"/>
<ie:param name=ATTRIBUTE data="out1.varchar"/>
<ie:param name=SQL="proc(in1, in2, out1)"/>

The FIELD and ATTRIBUTE parameters describe the data, and the SQL
parameter describes how the information is passed to the procedure or
function. By keeping the information and the signature separate, the webject
accepts any combination of arguments.

Note: If the stored procedure takes IN OUT arguments, there will be a
FIELD and an ATTRIBUTE parameter for each IN OUT argument in
addition to those specified for the IN and OUT arguments as described
previously.

This parameter is required.

3-30 JDBC Adapter Guide

Examples
The stored functions and procedures executed in the following examples are
created when the demo database is built. For more information see the
section titled Running the Webject Examples earlier in this chapter.

Executing a Stored Procedure
The following example documents the ExecuteProcedure.jsp file, which is
located in the
<ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples directory.

In this example, the stored procedure TESTPROC is executed. The results of
both the OUT arguments of the stored procedure are then displayed using
Display-Table webjects.

Note: To run this example on your own system, you need to replace the
values of the INSTANCE, DBUSER and PASSWD parameters with values
appropriate to your installation.

<%@page language="java" session="false"
 errorPage="IEError.jsp"%>
<%@taglib uri="http://www.ptc.com/infoengine/taglib/core"
 prefix="ie"%>

<html>
<head><title>Execute Procedure Webject</title>
<BASE>
</head>
<body>

<h1>Execute-Procedure webject: </h1>
<h3>Execute a SQL stored procedure</h3>

<ie:webject name="Execute-Procedure" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
 default="jdbcAdapter"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="PASSWD" data="dbuser_passwd"/>
 <ie:param name="FIELD" data="IN_ARG.varchar='in_param'"/>
 <ie:param name="FIELD"
data="INOUT_ARG.varchar='inout_param'"/>
 <ie:param name="ATTRIBUTE" data="INOUT_ARG.varchar"/>
 <ie:param name="ATTRIBUTE" data="OUT_ARG.varchar"/>
 <ie:param name="SQL"
 data="TESTPROC(IN_ARG,OUT_ARG,INOUT_ARG)"/>
</ie:webject>

</hr>

<ie:webject name="Display-Table" type="DSP">
 <ie:param name="GROUP_IN" data="INOUT_ARG.varchar"/>
</ie:webject>

<ie:webject name="Display-Table" type="DSP">
 <ie:param name="GROUP_IN" data="OUT_ARG.varchar"/>
</ie:webject>

</body>
</html>

The Webject Library 3-31

Executing a Stored Procedure that takes a STRUCT type IN argument
The following example documents the Executeinsert_emprec.jsp file, which is
located in the
<ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples directory.

In this example, the stored procedure insert_emp_rec is executed. This
procedure takes two IN arguments, and the values specified for these (using
the FIELD parameters) are used to insert a row into the EMP_LIST table.
Note that this table has a STRUCT type column with the SQL type name
EMP_REC.

Note: To run this example on your own system, you need to replace the
values of the INSTANCE, DBUSER and PASSWD parameters with values
appropriate to your installation.

%@page language="java" session="false" errorPage="IEError.jsp"%
%@taglib uri="http://www.ptc.com/infoengine/taglib/core" prefix="ie"%

<html>
<head><title>Execute Procedure Webject</title>
<BASE>
</head>
<body>
<h1>Execute-Procedure webject: </h1>
<h3>Execute a SQL stored function</h3>
 <ie:webject name="Execute-Procedure" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}" default="jdbcAdapter"/>
 <ie:param name="DBUSER" data="db_user"/>
 <ie:param name="PASSWD" data="db_passwd"/>
 <ie:param name="FIELD" data="in1.INTEGER=667"/>
 <ie:param name="FIELD" data="in2.STRUCT.EMP_REC=(George M
Willis,ARRAY.STRINGARRAY=('196 Florence','Arden Hills'),150000.50,23-Aug-1999)"/>
 <ie:param name="SQL" data="insert_emp_rec(in1,in2)"/>
 </ie:webject>
</body>
</html>

Executing a Stored Procedure that takes a STRUCT type OUT argument

The following example documents the Executeget_emprec.jsp file, which is
located in the
<ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples directory.

In this example, the stored procedure get_emp_rec is executed. This
procedure takes an INTEGER type IN argument and a STRUCT type OUT
argument. Executing the procedure results in the retrieval of the row that
was inserted into the EMP_LIST table by the previous example. The
STRUCT type value that is retrieved is stored in an output group, which is
then displayed using a Display-Table webject.

%@page language="java" session="false" errorPage="IEError.jsp"%
%@taglib uri="http://www.ptc.com/infoengine/taglib/core" prefix="ie"%

<html>
<head><title>Execute Procedure Webject</title>
<BASE>
</head>
<body>

3-32 JDBC Adapter Guide

<h1>Execute-Procedure webject: </h1>
<h3>Execute a SQL stored function</h3>
 <ie:webject name="Execute-Procedure" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}" default="jdbcAdapter"/>
 <ie:param name="DBUSER" data="db_user"/>
 <ie:param name="PASSWD" data="db_passwd"/>
 <ie:param name="FIELD" data="in1.INTEGER=667" />
 <ie:param name="ATTRIBUTE" data="in2.STRUCT.EMP_REC" />
 <ie:param name="SQL" data="get_emp_rec(in1,in2)"/>
 </ie:webject>

 <ie:webject name="Display-Table" type="DSP">
 <ie:param name="GROUP_IN" data="in2.STRUCT.EMP_REC"/>
 </ie:webject>

</body>
</html>

Executing a Stored Function with Cursor Data Type
The following example documents the ExecuteReturnCursor.jsp file, which is
located in the
<ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples directory.

In this example, the stored function named return_allemployees is executed.
The result of the OUT argument of the stored function has a data type of
CURSOR, and is then displayed using the Display-Table webject.

Note: To run this example on your own system, you need to replace the
values of the INSTANCE, DBUSER and PASSWD parameters with values
appropriate to your installation.

<%@page language="java" session="false"
 errorPage="IEError.jsp"%>
<%@taglib uri="http://www.ptc.com/infoengine/taglib/core"
 prefix="ie"%>

<html>
<head><title>Execute Procedure Webject</title>
<BASE>
</head>
<body>

<h1>Execute-Procedure webject: </h1>
<h3>Execute a SQL stored function</h3>

<ie:webject name="Execute-Procedure" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
 default="jdbcAdapter"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="PASSWD" data="dbuser_passwd"/>
 <ie:param name="RETURN" data="CURSOR"/>
 <ie:param name="SQL" data="return_allemployees"/>
</ie:webject>

<ie:webject name="Display-Table" type="DSP"/>

</body>
</html>

The Webject Library 3-33

Executing a Stored Function with Array Data Type
The following example documents the ExecuteReturnVarray.jsp file, which is
located in the
<ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples directory.

In this example, the stored function named return_varray is executed. The
OUT argument of the stored function has a data type of NUMARRAY, and is
then displayed using the Display-Table webject. The NUMARRAY data type
was created in the database when the BuildDemo.Db.jsp file was run.

Note: To run this example on your own system, you need to replace the
values of the INSTANCE, DBUSER and PASSWD parameters with values
appropriate to your installation.

<%@page language="java" session="false"
 errorPage="IEError.jsp"%>
<%@taglib uri="http://www.ptc.com/infoengine/taglib/core"
 prefix="ie"%>

<html>
<head><title>Execute Procedure Webject</title>
<BASE>
</head>
<body>

<h1>Execute-Procedure webject: </h1>
<h3>Execute a SQL stored function</h3>

<ie:webject name="Execute-Procedure" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
 default="jdbcAdapter"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="PASSWD" data="dbuser_passwd"/>
 <ie:param name="RETURN" data="ARRAY.NUMARRAY"/>
 <ie:param name="FIELD" data="i.varchar='decimal'"/>
 <ie:param name="SQL" data="return_varray(i)"/>
</ie:webject>

<ie:webject name="Display-Table" type="DSP"/>

</body>
</html>

3-34 JDBC Adapter Guide

Prepared-Batch-Update
Description

Executes a parameterized SQL update command for multiple sets of input
parameter values.

Syntax
<ie:webject name="Prepared-Batch-Update" type="ACT">
 <ie:param name="BLOB_COUNT" data="number_of_BLOBs"/>
 <ie:param name="CONNECTION_ATTEMPT_INTERVAL" data="interval"/>
 <ie:param name="CONNECTION_ATTEMPTS" data="attempts"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="DELIMITER" data="delimiter_used"/>
 <ie:param name="INSTANCE" data="instance"/>
 <ie:param name="PASSWD" data="dbuser_passwd"/>
 <ie:param name="GROUP_OUT" data="group_out"/>
 <ie:param name="PARAMTYPES"
data="delimiter_separated_parameter_types_in_order"/>
 <ie:param name="PARAMVALUES"
data="delimiter_separated_parameter_values_in_order"/>
 <ie:param name="SQL" data="a_parameterized_SQL_statement"/>
</ie:webject>

Parameters

Required Select Optional

INSTANCE DELIMITER BLOB_COUNT

PARAMTYPES CONNECTION_ATTEMPTS

PARAMVALUES CONNECTION_ATTEMPT_INTERVAL

SQL DBUSER

 GROUP_OUT

 PASSWD

BLOB_COUNT
Specifies how many BLOBs to deliver to the webject. Specifying a value of 0
results in no BLOBs being delivered. Specifying a value of more than 0
results in up to that specified number of BLOBs being delivered. For
example, if this parameter is specified with a value of five (5), then no more
than five BLOBs will be delivered to the webject.

The default behavior for this parameter is that all remaining BLOBs are
delivered to the webject. This parameter is optional.

The Webject Library 3-35

CONNECTION_ATTEMPTS
Defines the maximum number of times to attempt establishing a connection
to an adapter before returning an error. The default value is 1. This
parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPTS defines the maximum number of times to
iterate through the list of adapter instances.

CONNECTION_ATTEMPT_INTERVAL
Defines the amount of time, in seconds, to delay between connection
attempts. The default value is 60 seconds. This parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPT_INTERVAL defines the number of seconds to
wait between the attempts to iterate through the entire list of adapter
instances.

DBUSER
Specifies the name to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

DELIMITER
Specifies the delimiter that is used to separate any two consecutive entries in
the string specified as value for the webject parameter PARAMTYPES or
PARAMVALUES. This webject parameter is a Select parameter considering
that it is required only when the SQL statement being executed takes two or
more SQL parameters.

GROUP_OUT
Identifies the group returned by the webject. This parameter is optional.

INSTANCE
Specifies the name of the adapter that executes the webject. Adapter names
are defined when the adapter is configured for use in your Info*Engine
environment. This parameter is required.

In order to provide the ability to connect to other adapters if a specific
adapter is not available, this parameter can be multi-valued. Info*Engine
attempts to connect to the adapters in the order given. If the first adapter
specified is not available, the next adapter listed is tried, and so on, until a
connection is made. If a connection cannot be established with any listed
adapter, an error is returned.

PARAMTYPES
Specifies the types of SQL parameters in the order they occur in the
command. The following is a list of all possible types that may be specified:

ARRAY, BIGINT, BIT, DATE, DOUBLE, FLOAT, REAL, INTEGER, NULL,
NUMERIC, DECIMAL, SMALLINT, STRUCT, TIME, TINYINT, VARCHAR

3-36 JDBC Adapter Guide

The value for the webject parameter PARAMTYPES is specified as a string
consisting of any of the above said types, with any two consecutively
occurring types separated by a delimiter.

PARAMVALUES
Specifies the values of SQL parameters in the order they occur in the
command. The value for the webject parameter PARAMVALUES is specified
as a string consisting of values for the SQL parameters, with any two
consecutively occurring values separated by a delimiter.

PASSWD
Specifies the password to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

SQL
Specifies the parameterized SQL update command. There can be only one
entry of this webject parameter. This is in sharp contrast to the Do-SQL
webject, which can have multiple entries of the SQL webject parameter.

Note:

1. The webject provides support for ARRAY and STRUCT type SQL
parameters only when the underlying database type is Oracle. Executing
the webject for ARRAY or STRUCT type SQL parameters for database
types other than Oracle would result in an exception getting thrown.

2. The case associated with any of the standard SQL types specified as
value for the webject parameter PARAMTYPES is not important.
However, when dealing with ARRAY or STRUCT type parameters, the
SQL type name must be specified in exactly the same way as it was
created.

3. Values specified for VARCHAR, DATE and TIME type SQL parameters
follow the same rules as those described for the Batch-Execute-Procedure
webject.

4. A null value may be specified for a given parameter (provided the
associated column allows it) by specifying NULL for the value.

5. The value provided for the SQL webject parameter must be a
parameterized SQL command that returns a simple update count. If this
condition is violated, an exception would be thrown upon executing the
webject.

Example
The following example documents the PreparedBatchUpdate.jsp file, which is
located in the
<ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples directory.
It illustrates the Prepared-Batch-Update webject for standard SQL types.

The Webject Library 3-37

<%@page language="java" session="false"
errorPage="IEError.jsp"%>
<%@taglib uri="http://www.ptc.com/infoengine/taglib/core"
prefix="ie"%>
<html>
<head><title>Prepared-Batch-Update Webject</title>
<BASE>
</head>
<body bgcolor="#AABBCC">
<h1>Prepared-Batch-Update webject: </h1>
<h3>Executes a parameterized SQL update command for multiple
input sets as a batch</h3>

 <ie:webject name="Prepared-Batch-Update" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
default="jdbcAdapter"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="PASSWD" data="dbuser_passwd"/>
 <ie:param name="SQL" data="INSERT INTO EMP VALUES
(?, ?, ?, ?, ?, ?, ?, ?)"/>
 <ie:param name="DELIMITER" data="^"/>
 <ie:param name="PARAMTYPES"
data="INTEGER^VARCHAR^VARCHAR^INTEGER^DATE^INTEGER^INTEGER^INTE
GER"/>
 <ie:param name="PARAMVALUES"
data="8000^'John'^'CLERK'^7902^'11-Jan-1999'^900^NULL^20"/>
 <ie:param name="PARAMVALUES"
data="8001^'Jim'^'CLERK'^7902^'21-Jun-1999'^850^NULL^20"/>
 <ie:param name="PARAMVALUES"
data="8002^'Jack'^'CLERK'^7902^'27-Dec-1999'^800^NULL^20"/>
 <ie:param name="GROUP_OUT" data="PreparedBatchUpdate"/>
 </ie:webject>

</body>
</html>

The webject provides support for ARRAY and STRUCT type SQL parameters
in addition to the standard types. The following example documents the
PreparedBatchUpdArray.jsp file, which is located in the
<ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples directory.
It illustrates batch execution for ARRAY type SQL parameters.

<%@page language="java" session="false"
errorPage="IEError.jsp"%>
<%@taglib uri="http://www.ptc.com/infoengine/taglib/core"
prefix="ie"%>
<html>
<head><title>Prepared-Batch-Update Webject</title>
<BASE>
</head>
<body bgcolor="#AABBCC">
<h1>Prepared-Batch-Update webject: </h1>
<h3>Executes a parameterized SQL update command for multiple
input sets as a batch.</h3>
<h3>Illustrates batch execution for ARRAY type parameters.</h3>

 <ie:webject name="Prepared-Batch-Update" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
default="jdbcAdapter"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="PASSWD" data="dbuser_passwd"/>
 <ie:param name="SQL" data="INSERT INTO
VARRAY_EXAMPLE2 VALUES (?, ?, ?, ?, ?)"/>
 <ie:param name="DELIMITER" data="^"/>

3-38 JDBC Adapter Guide

 <ie:param name="PARAMTYPES"
data="INTEGER^ARRAY:INT_ARRAY^ARRAY:REAL_ARRAY^ARRAY:STRING_ARR
AY^ARRAY:ADDRESS_ARRAY"/>
 <ie:param name="PARAMVALUES" data="1^INT_ARRAY(1, 2,
3)^REAL_ARRAY(1.23, 2.34,
3.45)^STRING_ARRAY('a','sample','string')^ADDRESS_ARRAY(ADDRESS
('Scioto',101),ADDRESS('St. Mary',254))"/>
 <ie:param name="PARAMVALUES" data="2^INT_ARRAY(4, 5,
6)^REAL_ARRAY(4.34, 5.67, -
6.78)^STRING_ARRAY('another','sample','string')^ADDRESS_ARRAY(A
DDRESS('Patrick',124),ADDRESS('St. John',22))"/>
 <ie:param name="PARAMVALUES" data="3^INT_ARRAY(-7, 8, -
9)^REAL_ARRAY(-7.23, 8.34, -
9.45)^STRING_ARRAY('yet','another','sample','string')^ADDRESS_A
RRAY(ADDRESS('Parker',6),ADDRESS('Bishan',11))"/>
 <ie:param name="GROUP_OUT" data="PreparedBatchUpdArray"/>
 </ie:webject>

</body>
</html>

And the following example documents the PreparedBatchUpdStruct.jsp file,
which is located in the
<ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples directory.
It illustrates batch execution for STRUCT type SQL parameters.

<%@page language="java" session="false"
errorPage="IEError.jsp"%>
<%@taglib uri="http://www.ptc.com/infoengine/taglib/core"
prefix="ie"%>
<html>
<head><title>Prepared-Batch-Update Webject</title>
<BASE>
</head>
<body bgcolor="#AABBCC">
<h1>Prepared-Batch-Update webject: </h1>
<h3>Executes a parameterized SQL update command for multiple
input sets as a batch.</h3>
<h3>Illustrates batch execution for STRUCT type
parameters.</h3>

 <ie:webject name="Prepared-Batch-Update" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
default="jdbcAdapter"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="PASSWD" data="dbuser_passwd"/>
 <ie:param name="SQL" data="INSERT INTO PEOPLE
VALUES (?, ?)"/>
 <ie:param name="DELIMITER" data="^"/>
 <ie:param name="PARAMTYPES" data="INTEGER^STRUCT:PERSON"/>
 <ie:param name="PARAMVALUES" data="101^PERSON('Greg',
ADDRESS('Van Ness', 345))"/>
 <ie:param name="PARAMVALUES" data="102^PERSON('Patterson',
ADDRESS('Geary', 412))"/>
 <ie:param name="PARAMVALUES" data="103^PERSON('Mathews',
ADDRESS('Burntstones', 169))"/>
 <ie:param name="GROUP_OUT"
data="PreparedBatchUpdStruct"/>
 </ie:webject>

</body>
</html>

The Webject Library 3-39

Put-Blob-Stream
Description

Stores BLOB data in an object attribute, or table column.

Definition
BLOB (noun): An acronym for Binary Large OBject. Any random large block
of bits that needs to be stored in a database, such as a picture or sound file. A
BLOB is an object stored in a database that cannot be interpreted within the
database itself.

Syntax
<ie:webject name="Put-Blob-Stream" type="ACT">
 <ie:param name="ATTRIBUTE" data="attribute_with_blob_data"/>
 <ie:param name="BLOB_COUNT" data="number_of_BLOBs"/>
 <ie:param name="CLASS" data="tablename"/>
 <ie:param name="CONNECTION_ATTEMPT_INTERVAL" data="interval"/>
 <ie:param name="CONNECTION_ATTEMPTS" data="attempts"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="FILENAME" data="local_file_name"/>
 <ie:param name="GROUP_OUT" data="group"/>
 <ie:param name="INSTANCE" data="instance"/>
 <ie:param name="PASSWD" data="dbpassword"/>
 <ie:param name="WHERE" data="where_clause"/>
</ie:webject>

Parameters

Required Select Optional

ATTRIBUTE FILENAME BLOB_COUNT

CLASS CONNECTION_ATTEMPTS

INSTANCE CONNECTION_ATTEMPT_INTERVAL

WHERE DBUSER

 GROUP_OUT

 PASSWD

3-40 JDBC Adapter Guide

ATTRIBUTE
Specifies the attribute or column in the database table in which to store the
binary data. This parameter is required.

BLOB_COUNT
Specifies how many BLOBs to deliver to the webject. Specifying a value of 0
results in no BLOBs being delivered. Specifying a value of more than 0
results in up to that specified number of BLOBs being delivered. For
example, if this parameter is specified with a value of five (5), then no more
than five BLOBs will be delivered to the webject.

The default behavior for this parameter is that all remaining BLOBs are
delivered to the webject. This parameter is optional.

CLASS
Identifies the table name in which to store the binary data. This parameter is
required.

CONNECTION_ATTEMPTS
Defines the maximum number of times to attempt establishing a connection
to an adapter before returning an error. The default value is 1. This
parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPTS defines the maximum number of times to
iterate through the list of adapter instances.

CONNECTION_ATTEMPT_INTERVAL
Defines the amount of time, in seconds, to delay between connection
attempts. The default value is 60 seconds. This parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPT_INTERVAL defines the number of seconds to
wait between the attempts to iterate through the entire list of adapter
instances.

DBUSER
Specifies the name to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

FILENAME
Specifies the fully qualified path name of the file with binary data which is to
be stored. For additional information on uploading files, see the Info*Engine
User's Guide. If a file is not uploaded through the browser, then this
parameter must be specified.

GROUP_OUT
Identifies the group returned by the webject. This parameter is optional.

The Webject Library 3-41

INSTANCE
Specifies the name of the adapter that executes the webject. Adapter names
are defined when the adapter is configured for use in your Info*Engine
environment. This parameter is required.

In order to provide the ability to connect to other adapters if a specific
adapter is not available, this parameter can be multi-valued. Info*Engine
attempts to connect to the adapters in the order given. If the first adapter
specified is not available, the next adapter listed is tried, and so on, until a
connection is made. If a connection cannot be established with any listed
adapter, an error is returned.

In conjunction with this parameter, you can include two other parameters,
CONNECTION_ATTEMPTS and CONNECTION_ATTEMPT_INTERVAL.

PASSWD
Specifies the password to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

WHERE
Specifies search criteria for the database object in which to store the binary
data. The value for this parameter is specified as an SQL formatted where
clause. This parameter is required.

Example
The following example documents the PutBlobStream.jsp file, which is
located in the
<ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples directory.

In this example, the UploadBlob.jsp file, located in the same examples
directory, provides the input form necessary for providing the appropriate
parameter values for this example and should be run to execute
PutBlobStream.jsp.

The JDBC Adapter Instance field of the input form specifies the
INSTANCE parameter value appropriate to your installation. The Name
field of the input form specifies the name of the location where the file
containing BLOB data is to be put. The File field of the input form specifies
the full path name of the file which contains the BLOB data. The MIME
Type field enables the user to input a value for the MIME type – if the value
input by the user for this field is uploaded, it can be fetched from the
database for the given name while downloading the blob content. When the
form is submitted, PutBlobStream.jsp is called. The data specified on the
form provides the parameter values for the webjects.

In the PutBlobStream.jsp file that is shown below, note that values are
inserted into the table BLOBTEST for the columns FILENAME and
MIMETYPE. These would typically be the values input by the user for the
fields File and MIME Type while executing UploadBlob.jsp.

3-42 JDBC Adapter Guide

The modified file is as follows:

<%@page language="java" session="false"
errorPage="IEError.jsp"%>

<%@taglib uri="http://www.ptc.com/infoengine/taglib/core"
prefix="ie"%>

<html>
<head><title>Put-Blob-Stream Webject</title>
<BASE>
</head>
<body>
<h1>Put-Blob-Stream Webject</h1>
<h3>Stores BLOB data in an object attribute, or table
column</h3>

<ie:unit>
<ie:webject name="Do-Sql" type="ACT">
 <ie:param name="INSTANCE" data="${FORM[]instance[]}"
default="jdbcAdapter" />
 <ie:param name="CLASS" data="BLOBTEST"/>
 <ie:param name="SQL" data="INSERT INTO BLOBTEST
VALUES('${FORM[]filename[]}',EMPTY_BLOB(),'${FORM[]file[]}',${F
ORM[]mimetype[]})"/>
 <ie:param name="GROUP_OUT" data="temp" />
</ie:webject>
<ie:failure>
<!-- No failure processing -->
</ie:failure>
</ie:unit>

<ie:webject name="Put-Blob-Stream" type="ACT">
 <ie:param name="INSTANCE" data="${FORM[]instance[]}"
default="jdbcAdapter"/>
 <ie:param name="ATTRIBUTE" data="FILECONTENT"/>
 <ie:param name="CLASS" data="BLOBTEST"/>
 <ie:param name="WHERE"
data="NAME='${FORM[]filename[]}'"/>
 <ie:param name="FILENAME" data="${FORM[]file[]}"/>
 <ie:param name="GROUP_OUT" data="PutBlob"/>
</ie:webject>

<%
 String file = request.getParameter ("file");
%>

<i><%=file %></i> Uploaded to Database
</body>
</html>

The Webject Library 3-43

Put-Bulk-Stream
Description

Saves an uploaded file to the file system local to the adapter. For additional
information on uploading files, see the Info*Engine User's Guide.

Note: Put-Bulk-Stream cannot be run as a standalone task. It must be run
through a JSP page or an HTML template.

Syntax
<ie:webject name="Put-Bulk-Stream" type="ACT">
 <ie:param name="BLOB_COUNT" data="number_of_BLOBs"/>
 <ie:param name="CONNECTION_ATTEMPT_INTERVAL" data="interval"/>
 <ie:param name="CONNECTION_ATTEMPTS" data="attempts"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="FILENAME" data="filename"/>
 <ie:param name="GROUP_OUT" data="group_name/>
 <ie:param name="INSTANCE" data="instance_name"/>
 <ie:param name="PASSWD" data="dbpassword"/>
</ie:webject>

Parameters

Required Select Optional

FILENAME BLOB_COUNT

INSTANCE CONNECTION_ATTEMPTS

 CONNECTION_ATTEMPT_INTERVAL

 DBUSER

 GROUP_OUT

 PASSWD

BLOB_COUNT
Specifies how many BLOBs to deliver to the webject. Specifying a value of 0
results in no BLOBs being delivered. Specifying a value of more than 0
results in up to that specified number of BLOBs being delivered. For
example, if this parameter is specified with a value of five (5), then no more
than five BLOBs will be delivered to the webject.

The default behavior for this parameter is that all remaining BLOBs are
delivered to the webject. This parameter is optional.

3-44 JDBC Adapter Guide

CONNECTION_ATTEMPTS
Defines the maximum number of times to attempt establishing a connection
to an adapter before returning an error. The default value is 1. This
parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPTS defines the maximum number of times to
iterate through the list of adapter instances.

CONNECTION_ATTEMPT_INTERVAL
Defines the amount of time, in seconds, to delay between connection
attempts. The default value is 60 seconds. This parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPT_INTERVAL defines the number of seconds to
wait between the attempts to iterate through the entire list of adapter
instances.

DBUSER
Specifies the name to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

FILENAME
Specifies the fully qualified path name of the file to be saved. This parameter
is required.

GROUP_OUT
Identifies the group returned by the webject. This parameter is optional.

INSTANCE
Specifies the name of the adapter that executes the webject. Adapter names
are defined when the adapter is configured for use in your Info*Engine
environment. This parameter is required.

In order to provide the ability to connect to other adapters if a specific
adapter is not available, this parameter can be multi-valued. Info*Engine
attempts to connect to the adapters in the order given. If the first adapter
specified is not available, the next adapter listed is tried, and so on, until a
connection is made. If a connection cannot be established with any listed
adapter, an error is returned.

In conjunction with this parameter, you can include two other parameters,
CONNECTION_ATTEMPTS and CONNECTION_ATTEMPT_INTERVAL.

The Webject Library 3-45

PASSWD
Specifies the password to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

Example
The following example documents the PutBulkStream.jsp file, which is
located in the
<ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples directory.

This example uses the JSP useBean directive in order to display the image.
To understand this example you must be familiar with the JSP useBean
directive and its use. For further information about the API methods called
within the useBean directive, see the API documentation that is in the
following location:

<ie_dir>/codebase/infoengine/docs/apidocs

where <ie_dir> is the location where Info*Engine is installed.

In this example, the UploadBulk.jsp file, located in the same examples
directory, provides the input form necessary for providing the appropriate
parameter values for this example and should be run to execute
PutBulkStream.jsp.

The JDBC Adapter Instance field of the input form should specify the
INSTANCE parameter value appropriate to your installation. The Name
field of the input form specifies the name of the file where the bulk data is to
be put. When the form is submitted, PutBulkStream.jsp is called. The data
specified on the form provides the parameter values for the webjects.

<%@page language="java" session="false"
 errorPage="IEError.jsp"%>
<%@ taglib uri="http://www.ptc.com/infoengine/taglib/core"
 prefix="ie" %>
<html>
<head>
<title> BULK Upload</title>
</head>
<BODY>
<form method="POST" action="PutBulkStream.jsp"
 enctype="multipart/form-data">
<TABLE>
 <tr>
 <td align=right>
 JDBC Adapter Instance:
 </td>
 <td>
 <INPUT name="instance" type="text" size=50>
 </td>
 </tr>
 <tr>
 <td align=right>
 Name:
 </td>

3-46 JDBC Adapter Guide

 <td>
 <INPUT name="filename" type="text" size=50>
 </td>
 </tr>
 <tr>
 <td align=right>
 File:
 </td>
 <td>
 <INPUT name="file" type="file" size=50>
 </td>
 </tr>
 <tr>
 <td align=left>
 <INPUT name="submit" type="submit" value="Submit"
 id=button>
 </td>
 </tr>
</table>
</form>
</body>
</html>

In the following PutBulkStream.jsp, the Put-Bulk-Stream webject puts the
bulk data in the file specified in the Name field of the input form.

<%@page language="java" session="true" errorPage="IEError.jsp"
import="com.infoengine.object.factory.*,com.infoengine.object.*"%>

<html>
<head><title>Put-Bulk-Stream Webject</title>
<BASE>
</head>
<body>
<h1>Put-Bulk-Stream Webject:</h1>
<h3> Save and Upload a file to Adapter's local file system</h3>

<% String message_to_display = "";
 boolean upload_failed = false; %>

<jsp:useBean id="ie" class="com.infoengine.jsp.InfoEngine" scope="session">
 <%
 ie.setServletRequest (request);
 ie.setEnableExceptions (true);
 %>
 </jsp:useBean>
 <%
 IeMultipartInputStream is = new IeMultipartInputStream (request);
 String filename = is.getParameter ("filename");
 String instance = is.getParameter ("instance");
 %>
 <jsp:useBean id="put" class="com.infoengine.SAK.ObjectWebject">
 <%
 put.setService (ie);
 put.setName ("Put-Bulk-Stream");
 put.addParam ("INSTANCE", instance);
 put.addParam ("FILENAME", filename);
 put.addParam ("GROUP_OUT", "GroupOut");
 put.setInputStream (is);

 try
 {
 put.invoke ();
 message_to_display = "Uploaded bulk data to " + filename;

The Webject Library 3-47

 }
 catch (Exception e)
 {
 message_to_display = e.getMessage ();
 upload_failed = true;
 }
 %>
 </jsp:useBean>

 <%= message_to_display%>

<% if (upload_failed == true)
 { %>
 <h3>Upload failed.</h3>
 <% } %>

</body>
</html>

3-48 JDBC Adapter Guide

Put-Clob-Stream
Description

Stores character data in an object attribute or table column.

Definition
CLOB (noun): An acronym for Character Large OBject. A CLOB column
stores single-byte fixed-width character objects, such as text documents. A
CLOB is an object stored in a database that cannot be interpreted within the
database itself.

Syntax
<ie:webject name="Put-Clob-Stream" type="ACT">
 <ie:param name="ATTRIBUTE" data="attribute_with_clob_data"/>
 <ie:param name="BLOB_COUNT" data="number_of_BLOBs"/>
 <ie:param name="CLASS" data="tablename"/>
 <ie:param name="CONNECTION_ATTEMPT_INTERVAL" data="interval"/>
 <ie:param name="CONNECTION_ATTEMPTS" data="attempts"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="FILENAME" data="local_file_name"/>
 <ie:param name="GROUP_OUT" data="group"/>
 <ie:param name="INSTANCE" data="instance"/>
 <ie:param name="PASSWD" data="dbpassword"/>
 <ie:param name="WHERE" data="where_clause"/>
</ie:webject>

Parameters

Required Select Optional

ATTRIBUTE FILENAME BLOB_COUNT

CLASS CONNECTION_ATTEMPTS

INSTANCE CONNECTION_ATTEMPT_INTERVAL

WHERE DBUSER

 GROUP_OUT

 PASSWD

The Webject Library 3-49

ATTRIBUTE
Specifies the attribute or column in the database table in which to store the
character data. This parameter is required.

BLOB_COUNT
Specifies how many BLOBs to deliver to the webject. Specifying a value of 0
results in no BLOBs being delivered. Specifying a value of more than 0
results in up to that specified number of BLOBs being delivered. For
example, if this parameter is specified with a value of five (5), then no more
than five BLOBs will be delivered to the webject.

The default behavior for this parameter is that all remaining BLOBs are
delivered to the webject. This parameter is optional.

CLASS
Identifies the table name in which to store the character data. This
parameter is required.

CONNECTION_ATTEMPTS
Defines the maximum number of times to attempt establishing a connection
to an adapter before returning an error. The default value is 1. This
parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPTS defines the maximum number of times to
iterate through the list of adapter instances.

CONNECTION_ATTEMPT_INTERVAL
Defines the amount of time, in seconds, to delay between connection
attempts. The default value is 60 seconds. This parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPT_INTERVAL defines the number of seconds to
wait between the attempts to iterate through the entire list of adapter
instances.

DBUSER
Specifies the name to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

FILENAME
Specifies a fully qualified path name of the file in which the character data is
to be stored. For additional information on uploading files, see the
Info*Engine User's Guide. If a file is not uploaded through the browser, then
this parameter must be specified.

GROUP_OUT
Identifies the group returned by the webject. This parameter is optional.

3-50 JDBC Adapter Guide

INSTANCE
Specifies the name of the adapter that executes the webject. Adapter names
are defined when the adapter is configured for use in your Info*Engine
environment. This parameter is required.

In order to provide the ability to connect to other adapters if a specific
adapter is not available, this parameter can be multi-valued. Info*Engine
attempts to connect to the adapters in the order given. If the first adapter
specified is not available, the next adapter listed is tried, and so on, until a
connection is made. If a connection cannot be established with any listed
adapter, an error is returned.

In conjunction with this parameter, you can include two other parameters,
CONNECTION_ATTEMPTS and CONNECTION_ATTEMPT_INTERVAL.

PASSWD
Specifies the password to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

WHERE
Specifies search criteria for the database table row in which to store the
character data. The value for this parameter is specified as an SQL formatted
where clause. This parameter is required.

The Webject Library 3-51

Example
The following example documents the PutClobStream.jsp file, which is
located in the
<ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples directory.

In this example, the UploadClob.jsp file, located in the same examples
directory, provides the input form necessary for providing the appropriate
parameter values for this example and should be run to execute
PutClobStream.jsp.

The JDBC Adapter Instance field of the input form should specify the
INSTANCE parameter value appropriate to your installation. The Name
field of the input form specifies the name of the location where the file
containing CLOB data is to be put. The File field of the input form specifies
the full path name of the file which contains the CLOB data. The MIME
Type field enables the user to input a value for the MIME type – if the value
input by the user for this field is uploaded, it can be fetched from the
database for the given name while downloading the clob content. When the
form is submitted, PutClobStream.jsp is called. The data specified on the
form provides the parameter values for the webjects.

<%@page language="java" session="false"
errorPage="IEError.jsp"%>

<%@ taglib uri="http://www.ptc.com/infoengine/taglib/core"
prefix="ie" %>

<html>
<head>
<title> CLOB Upload</title>
</head>
<BODY>
<H2> Upload File</H2>
<form method="POST" action="PutClobStream.jsp">
<TABLE>
 <tr>
 <td align=right>
 JDBC Adapter Instance:
 </td>
 <td>
 <INPUT name="instance" type="text" size=50>
 </td>
 </tr>
 <tr>
 <td align=right>
 Name:
 </td>
 <td>
 <INPUT name="filename" type="text" size=50>
 </td>
 </tr>
 <tr>
 <td align=right>
 File:
 </td>
 <td>
 <INPUT name="file" type="text" size=50>
 </td>
</tr>
 <tr>

3-52 JDBC Adapter Guide

 <td align=right>
 MIME Type:
 </td>
 <td>
 <input name="mimetype" type="text" size=50>
 </td>
 </tr>
<tr>
 <td>
 </td>
 <td align=left>
 <INPUT name="submit" type="submit" value="Submit"
id=button>
 </td>
 </tr>
</table>
</form>
</body>
</html>

In the following PutClobStream.jsp, the Do-Sql webject creates the location in
the CLOBTEST table where the file containing CLOB data is to be placed,
using the data from the Name field of the input form to identify the location.
Note that values are inserted into the table for the columns FILENAME and
MIMETYPE as well, these being the values input by the user for the fields
File and MIME Type while executing UploadClob.jsp. The Put-Clob-Stream
webject then puts the file specified in the File field of the input form into the
FILECONTENT column of the CLOBTEST table, in the location specified in
the Name field.

<%@page language="java" session="false"
errorPage="IEError.jsp"%>

<%@taglib uri="http://www.ptc.com/infoengine/taglib/core"
prefix="ie"%>

<html>
<head><title>Put-Clob-Stream Webject</title>
<BASE>
</head>
<body>
<h1>Put-Clob-Stream Webject:</h1>
<ie:unit>
<ie:webject name="Do-Sql" type="ACT">
 <ie:param name="INSTANCE" data="${FORM[]instance[]}"
default="jdbcAdapter" />
 <ie:param name="CLASS" data="CLOBTEST"/>
 <ie:param name="SQL" data="INSERT INTO CLOBTEST
VALUES('${FORM[]filename[]}',EMPTY_CLOB(),'${FORM[]file[]}',${F
ORM[]mimetype[]})"/>
 <ie:param name="GROUP_OUT" data="temp" />
</ie:webject>
<ie:failure>
<!-- No failure processing -->
</ie:failure>
</ie:unit>
<ie:webject name="Put-Clob-Stream" type="ACT">
 <ie:param name="INSTANCE" data="${FORM[]instance[]}"
default="jdbcAdapter"/>
 <ie:param name="ATTRIBUTE" data="FILECONTENT"/>
 <ie:param name="CLASS" data="CLOBTEST"/>
 <ie:param name="WHERE"
data="NAME='${FORM[]filename[]}'"/>

The Webject Library 3-53

 <ie:param name="FILENAME" data="${FORM[]file[]}"/>
 <ie:param name="GROUP_OUT" data="PutClob"/>
</ie:webject>
<%
 String file = request.getParameter ("file");
%>
<i><%=file %></i> Uploaded to Database
</body>
</html>

3-54 JDBC Adapter Guide

Query-Attributes
Description

Returns all unique records that match the specified query criteria. The
records come from the specified table. If duplicate values exist, then the
duplicate value is returned only once.

Syntax
<ie:webject name="Query-Attributes" type="OBJ">
 <ie:param name="ATTRIBUTE" data="attribute"/>
 <ie:param name="BLOB_COUNT" data="number_of_BLOBs"/>
 <ie:param name="CLASS" data="class"/>
 <ie:param name="CONNECTION_ATTEMPT_INTERVAL" data="interval"/>
 <ie:param name="CONNECTION_ATTEMPTS" data="attempts"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="GROUP_OUT" data="group_out"/>
 <ie:param name="INSTANCE" data="instance"/>
 <ie:param name="MAX_QUERY_SIZE" data="max_query_size"/>
 <ie:param name="PASSWD" data="dbpassword"/>
 <ie:param name="SORTBY" data="sortby"/>
 <ie:param name="SORTED" data="[ASC | DESC]"/>
 <ie:param name="WHERE" data="where_clause"/>
</ie:webject>

Parameters

Required Select Optional

CLASS SORTBY ATTRIBUTE

INSTANCE SORTED BLOB_COUNT

WHERE CONNECTION_ATTEMPTS

 CONNECTION_ATTEMPT_INTERVAL

 DBUSER

 GROUP_OUT

 MAX_QUERY_SIZE

 PASSWD

The Webject Library 3-55

ATTRIBUTE
Specifies which attributes from the queried object to return. The default for
this parameter is to return all attributes. Multiple values can be specified for
this parameter. This parameter is optional.

BLOB_COUNT
Specifies how many BLOBs to deliver to the webject. Specifying a value of 0
results in no BLOBs being delivered. Specifying a value of more than 0
results in up to that specified number of BLOBs being delivered. For
example, if this parameter is specified with a value of five (5), then no more
than five BLOBs will be delivered to the webject.

The default behavior for this parameter is that all remaining BLOBs are
delivered to the webject. This parameter is optional.

CLASS
Specifies which SQL-related table you want to query. This parameter is
required.

CONNECTION_ATTEMPTS
Defines the maximum number of times to attempt establishing a connection
to an adapter before returning an error. The default value is 1. This
parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPTS defines the maximum number of times to
iterate through the list of adapter instances.

CONNECTION_ATTEMPT_INTERVAL
Defines the amount of time, in seconds, to delay between connection
attempts. The default value is 60 seconds. This parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPT_INTERVAL defines the number of seconds to
wait between the attempts to iterate through the entire list of adapter
instances.

DBUSER
Specifies the name to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

GROUP_OUT
Identifies the group returned by the webject. This parameter is optional.

3-56 JDBC Adapter Guide

INSTANCE
Specifies the name of the adapter that executes the webject. Adapter names
are defined when the adapter is configured for use in your Info*Engine
environment. This parameter is required.

In order to provide the ability to connect to other adapters if a specific
adapter is not available, this parameter can be multi-valued. Info*Engine
attempts to connect to the adapters in the order given. If the first adapter
specified is not available, the next adapter listed is tried, and so on, until a
connection is made. If a connection cannot be established with any listed
adapter, an error is returned.

In conjunction with this parameter, you can include two other parameters,
CONNECTION_ATTEMPTS and CONNECTION_ATTEMPT_INTERVAL.

MAX_QUERY_SIZE
Specifies maximum number of objects returned from a database query. The
default for this parameter is 2000. If there are more than the maximum
number of objects, the JDBC driver silently drops the extra objects. This
parameter is optional.

PASSWD
Specifies the password to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

SORTBY
Defines the attribute names to be used as the sort parameters. Multiple
values can be specified for this parameter. Attributes are sorted in the order
in which each SORTBY parameter appears in the webject. If no values are
specified for this parameter, no sorting will occur. If SORTED is specified,
then one SORTBY parameter should be specified for each occurrence of the
SORTED parameter.

SORTED
Describes how to sort the attribute names specified in the SORTBY
parameter. Valid values are ASC for ascending and DESC for descending.
For each occurrence of this parameter, one SORTBY parameter should also
be specified. The default value for this parameter is ASC.

WHERE
Specifies search criteria for the database objects to return. The value for this
parameter is specified as an SQL formatted where clause. This parameter is
required.

The Webject Library 3-57

Example
The following example documents the QueryAttributes.jsp file, which is
located in the
<ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples directory.

In this example, the database is queried for unique values of the DEPTNO
attribute of the EMP table. The results are sorted in descending order, and
are displayed using the Display-Table webject.

Note: To run this example on your own system, you need to replace the value
of the INSTANCE parameter with a value appropriate to your installation.

<%@page language="java" session="false"
 errorPage="IEError.jsp"%>
<%@taglib uri="http://www.ptc.com/infoengine/taglib/core"
 prefix="ie"%>

<html>
<head><title>Query-Attributes Webject</title>
<BASE>
</head>
<body>

<h1>Query-Attributes webject:</h1>
<h3> Based on specified query criteria, returns a set of
distinct records from a table</h3>

<ie:webject name="Query-Attributes" type="OBJ">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
 default="jdbcAdapter"/>
 <ie:param name="ATTRIBUTE" data="${@FORM[]column[]}"
 default="DEPTNO"/>
 <ie:param name="SORTBY" data="DEPTNO"/>
 <ie:param name="SORTED" data="DESC"/>
 <ie:param name="CLASS" data="${@FORM[]table[]}"
 default="EMP"/>
 <ie:param name="WHERE" data="()"/>
 <ie:param name="GROUP_OUT" data="QueryAttribute"/>
</ie:webject>

<ie:webject name="Display-Table" type="DSP"/>

</body>
</html>

3-58 JDBC Adapter Guide

Query-Objects
Description

Returns all records that match the specified query criteria.

Syntax
<ie:webject name="Query-Objects" type="OBJ">
 <ie:param name="ATTRIBUTE" data="attribute"/>
 <ie:param name="BLOB_COUNT" data="number_of_BLOBs"/>
 <ie:param name="CLASS" data="class"/>
 <ie:param name="CONNECTION_ATTEMPT_INTERVAL" data="interval"/>
 <ie:param name="CONNECTION_ATTEMPTS" data="attempts"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="GROUP_OUT" data="group_out"/>
 <ie:param name="INSTANCE" data="instance"/>
 <ie:param name="MAX_QUERY_SIZE" data="max_query_size"/>
 <ie:param name="PASSWD" data="dbpassword"/>
 <ie:param name="SORTBY" data="attribute"/>
 <ie:param name="SORTED" data="[ASC | DESC]"/>
 <ie:param name="WHERE" data="where_clause"/>
</ie:webject>

Parameters

Required Select Optional

CLASS SORTBY ATTRIBUTE

INSTANCE SORTED BLOB_COUNT

WHERE CONNECTION_ATTEMPTS

 CONNECTION_ATTEMPT_INTERVAL

 DBUSER

 GROUP_OUT

 MAX_QUERY_SIZE

 PASSWD

The Webject Library 3-59

ATTRIBUTE
Specifies the name of the attributes to be returned. The default value for this
parameter is to return all attributes. Multiple values can be specified for this
parameter. This parameter is optional.

BLOB_COUNT
Specifies how many BLOBs to deliver to the webject. Specifying a value of 0
results in no BLOBs being delivered. Specifying a value of more than 0
results in up to that specified number of BLOBs being delivered. For
example, if this parameter is specified with a value of five (5), then no more
than five BLOBs will be delivered to the webject.

The default behavior for this parameter is that all remaining BLOBs are
delivered to the webject. This parameter is optional.

CLASS
Specifies which table to query. This parameter is required.

CONNECTION_ATTEMPTS
Defines the maximum number of times to attempt establishing a connection
to an adapter before returning an error. The default value is 1. This
parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPTS defines the maximum number of times to
iterate through the list of adapter instances.

CONNECTION_ATTEMPT_INTERVAL
Defines the amount of time, in seconds, to delay between connection
attempts. The default value is 60 seconds. This parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPT_INTERVAL defines the number of seconds to
wait between the attempts to iterate through the entire list of adapter
instances.

DBUSER
Specifies the name to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

GROUP_OUT
Identifies the group returned by the webject. This parameter is optional.

3-60 JDBC Adapter Guide

INSTANCE
Specifies the name of the adapter that executes the webject. Adapter names
are defined when the adapter is configured for use in your Info*Engine
environment. This parameter is required.

In order to provide the ability to connect to other adapters if a specific
adapter is not available, this parameter can be multi-valued. Info*Engine
attempts to connect to the adapters in the order given. If the first adapter
specified is not available, the next adapter listed is tried, and so on, until a
connection is made. If a connection cannot be established with any listed
adapter, an error is returned.

In conjunction with this parameter, you can include two other parameters,
CONNECTION_ATTEMPTS and CONNECTION_ATTEMPT_INTERVAL.

MAX_QUERY_SIZE
Specifies maximum number of objects returned from a database query. The
default for this parameter is 2000. If there are more than the maximum
number of objects, the JDBC driver silently drops the extra objects. This
parameter is optional.

PASSWD
Specifies the password to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

SORTBY
Defines the attribute names to be used as the sort parameters. Multiple
values can be specified for this parameter. Attributes are sorted in the order
in which each SORTBY parameter appears in the webject. If no values are
specified for this parameter, no sorting will occur. If SORTED is specified,
then one SORTBY parameter should be specified for each occurrence of the
SORTED parameter.

SORTED
Describes how to sort the attribute names specified in the SORTBY
parameter. Valid values are ASC for ascending and DESC for descending.
For each occurrence of this parameter, one SORTBY parameter should also
be specified. The default value for this parameter is ASC.

WHERE
Specifies search criteria for the database objects to return. The value for this
parameter is specified as an SQL formatted where clause. This parameter is
required.

The Webject Library 3-61

Example
The following example documents the QueryObjects.jsp file, which is located
in the <ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples
directory.

In this example, the database is queried for all values of the DEPTNO
attribute of the EMP table. The results are sorted in descending order, and
are displayed using the Display-Table webject.

Note: To run this example on your own system, you need to replace the
values of the INSTANCE, DBUSER and PASSWD parameters with values
appropriate to your installation.

<%@page language="java" session="false"
 errorPage="IEError.jsp"%>
<%@taglib uri="http://www.ptc.com/infoengine/taglib/core"
 prefix="ie"%>

<html>
<head><title>Query-Objects Webject</title>
<BASE>
</head>
<body>
<h1>Query-Objects webject: </h1>
<h3>Query specified table in a database</h3>

<ie:webject name="Query-Objects" type="OBJ">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
 default="jdbcAdapter"/>
 <ie:param name="ATTRIBUTE" data="${@FORM[]column[]}"
 default="DEPTNO"/>
 <ie:param name="SORTBY" data="DEPTNO"/>
 <ie:param name="SORTED" data="DESC"/>
 <ie:param name="CLASS" data="${@FORM[]table[]}"
 default="EMP"/>
 <ie:param name="WHERE" data="()"/>
 <ie:param name="GROUP_OUT" data="QueryObject"/>
</ie:webject>

<ie:webject name="Display-Table" type="DSP"/>

</body>
</html>

3-62 JDBC Adapter Guide

Send-Blob-Stream
Description

Sends any BLOB information from an object as a stream to the browser or
other application which calls the webject.

Definition
BLOB (noun): An acronym for Binary Large OBject. Any random large block
of bits that needs to be stored in a database, such as a picture or sound file. A
BLOB is an object stored in a database that cannot be interpreted within the
database itself

Syntax
<ie:webject name="Send-Blob-Stream" type="ACT">
 <ie:param name="ATTRIBUTE" data="attribute_with_blob_data"/>
 <ie:param name="BLOB_COUNT" data="number_of_BLOBs"/>
 <ie:param name="CLASS" data="tablename"/>
 <ie:param name="CONNECTION_ATTEMPT_INTERVAL" data="interval"/>
 <ie:param name="CONNECTION_ATTEMPTS" data="attempts"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="FILENAME" data="file_name"/>
 <ie:param name="GROUP_OUT" data="group"/>
 <ie:param name="INSTANCE" data="instance"/>
 <ie:param name="MIMETYPE" data="mimetype"/>
 <ie:param name="PASSWD" data="dbpassword"/>
 <ie:param name="WHERE" data="where_clause"/>
</ie:webject>

Parameters

Required Select Optional

ATTRIBUTE BLOB_COUNT

CLASS CONNECTION_ATTEMPTS

FILENAME CONNECTION_ATTEMPT_INTERVAL

INSTANCE DBUSER

MIMETYPE GROUP_OUT

WHERE PASSWD

The Webject Library 3-63

ATTRIBUTE
Specifies which attribute or column in the database to return as binary data.
This parameter is required.

BLOB_COUNT
Specifies how many BLOBs to deliver to the webject. Specifying a value of 0
results in no BLOBs being delivered. Specifying a value of more than 0
results in up to that specified number of BLOBs being delivered. For
example, if this parameter is specified with a value of five (5), then no more
than five BLOBs will be delivered to the webject.

The default behavior for this parameter is that all remaining BLOBs are
delivered to the webject. This parameter is optional.

CLASS
Specifies the name of the table containing the BLOB data. This parameter is
required.

CONNECTION_ATTEMPTS
Defines the maximum number of times to attempt establishing a connection
to an adapter before returning an error. The default value is 1. This
parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPTS defines the maximum number of times to
iterate through the list of adapter instances.

CONNECTION_ATTEMPT_INTERVAL
Defines the amount of time, in seconds, to delay between connection
attempts. The default value is 60 seconds. This parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPT_INTERVAL defines the number of seconds to
wait between the attempts to iterate through the entire list of adapter
instances.

DBUSER
Specifies the name to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

FILENAME
Specifies the name of the file to return. The value specified for this attribute
is used to write the Content-Disposition HTTP Header. When the BLOB
information is saved as a file, the FILENAME value is shown as the default
file name.

If placed in single quotes, the string typed here will be used as the fully
qualified name for the file data. If no quotes are used, the string represents
the attribute which contains the file path. This parameter is required.

3-64 JDBC Adapter Guide

GROUP_OUT
Identifies the group returned by the webject. This parameter is optional.

INSTANCE
Specifies the name of the adapter that executes the webject. Adapter names
are defined when the adapter is configured for use in your Info*Engine
environment. This parameter is required.

In order to provide the ability to connect to other adapters if a specific
adapter is not available, this parameter can be multi-valued. Info*Engine
attempts to connect to the adapters in the order given. If the first adapter
specified is not available, the next adapter listed is tried, and so on, until a
connection is made. If a connection cannot be established with any listed
adapter, an error is returned.

In conjunction with this parameter, you can include two other parameters,
CONNECTION_ATTEMPTS and CONNECTION_ATTEMPT_INTERVAL.

MIMETYPE
Specifies the name of the attribute that has a mime type. If placed in single
quotes, the string typed here is then used as the mime type for the BLOB
data, otherwise this value represents a column in the table. This parameter
is required.

PASSWD
Specifies the password to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

WHERE
Specifies search criteria for the database object containing BLOB data to
return. The value for this parameter is specified as an SQL formatted where
clause. This parameter is required.

Example
The following example documents the SendBlobStream.jsp file, which is
located in the
<ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples directory.

This example uses the JSP useBean directive in order to display the image.
To understand this example you must be familiar with the JSP useBean
directive and its use. For further information about the API methods called
within the useBean directive, see the API documentation that is in the
following location:

<ie_dir>/codebase/infoengine/docs/apidocs

where <ie_dir> is the location where Info*Engine is installed.

In this example, the DownloadBlob.jsp file, located in the same examples
directory, provides the input form necessary for providing the appropriate

The Webject Library 3-65

parameter values for this example and should be run to execute
SendBlobStream.jsp.

The JDBC Adapter Instance field of the input form should specify the
INSTANCE parameter value appropriate to your installation. The Name
field specifies the name of the location where the file containing BLOB data
is located. The File Name field specifies the full path name of the file which
contains the BLOB data. The Mime Type field specifies the mime type of the
file. When the form is submitted, SendBlobStream.jsp is called. The data
specified on the form provides the parameter values for the webjects.

<%@page language="java" errorPage="IEError.jsp"
import="java.util.*,com.infoengine.object.factory.*,com.infoeng
ine.SAK.*,com.infoengine.object.*" %>

<%@ taglib uri="http://www.ptc.com/infoengine/taglib/core"
prefix="ie"%>

<ie:getService varName="vdb"/>
<jsp:useBean id="qa" class="com.infoengine.SAK.ActionWebject">
<% out.clearBuffer();
 qa.setService(vdb);
 qa.setName("Send-Blob-Stream");
 boolean user_input_file_name = true;

 boolean user_input_mime_type = false;
 String file_name = request.getParameter("filename");

 if(file_name != null){
 file_name = file_name.trim();
 if(!(file_name.startsWith("'") &&
file_name.endsWith("'"))){user_input_file_name = false;}

}else{ file_name ="";user_input_file_name = false;}

String mtype = request.getParameter("mimetype");
if(mtype != null){

 mtype = mtype.trim();

 if(mtype.startsWith("'") && mtype.endsWith("'"))

 user_input_mime_type = true;

 }else mtype = "";
 StringBuffer name=new StringBuffer("NAME='");
 name.append(request.getParameter("name"));
 name.append("'");
 if(user_input_file_name == false || user_input_mime_type ==
false)
 {
 /* No value was input by the user for File Name and/or
MIME type; the following webject fetches these from the
database and stores in group "temp" */

 %><ie:webject name="Query-Objects" type="OBJ">
 <ie:param name="INSTANCE"
data="${@FORM[]instance[]}" default="jdbcAdapter"/>
 <ie:param name="CLASS" data="BLOBTEST"/>
 <%if(user_input_mime_type == false){%>
 <ie:param name="ATTRIBUTE"
data="${@FORM[]mimetype[]}"/><%}%>
<%if(user_input_file_name == false){%>
<ie:param name="ATTRIBUTE"
data="${@FORM[]filename[]}"/><%}%>

3-66 JDBC Adapter Guide

 <ie:param name="WHERE"
data="<%=name.toString()%>"/>
 <ie:param name="GROUP_OUT" data="temp"/>
 </ie:webject><%

 /* Fetch the MIME type and/or file name from the group
"temp" */
 IeGroup ie_group = (vdb.getCollection()).getGroup("temp");
 Group group = new Group(ie_group);
 Enumeration elements = group.getElements();
 Element elem = null;
 Att att1 = null, att2 = null;
 if(elements.hasMoreElements())
 {
 elem = (Element)elements.nextElement();
 att1 = elem.getAtt(mtype);
 if(user_input_mime_type == false && att1 != null)
 {
 mtype = (att1.getValue()).toString();
 mtype = "'" + mtype + "'";
 }
 att2 = elem.getAtt(file_name);
 if(user_input_file_name == false && att2 != null)
 {
 file_name = (att2.getValue()).toString();
 }
 }
 }
 StringBuffer fname=new StringBuffer("filename='");
 fname.append(file_name);
 fname.append("'");
qa.addParam("INSTANCE",request.getParameter("instance"));
 qa.addParam("ATTRIBUTE","FILECONTENT");
 qa.addParam("DBUSER","gbabu");
 qa.addParam("PASSWD","gbabu");
 qa.addParam("CLASS","BLOBTEST");
 qa.addParam("WHERE",name.toString());
 qa.addParam("MIMETYPE", mtype);
 qa.addParam("FILENAME", file_name);
 qa.addParam("GROUP_OUT","SendBlob");
 qa.setOutputStream(response.getWriter());
 response.addHeader("Content-
Disposition",fname.toString());
 /* Make sure the single quotes in mtype do not get
passed over to
 setContentType() */
if(mtype != "" && mtype != null)
 response.setContentType(mtype.substring(1,
mtype.length()-1));
 qa.invoke(); response.getWriter().close();
%>
</jsp:useBean>

The Webject Library 3-67

Send-Bulk-Stream
Description

Retrieves a file from the file system local to the adapter and streams it back
to the browser.

Syntax
<ie:webject name="Send-Bulk-Stream" type="ACT">
 <ie:param name="BLOB_COUNT" data="number_of_BLOBs"/>
 <ie:param name="CLASS" data="tablename"/>
 <ie:param name="CONNECTION_ATTEMPT_INTERVAL" data="interval"/>
 <ie:param name="CONNECTION_ATTEMPTS" data="attempts"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="FILENAME" data="file_name"/>
 <ie:param name="GROUP_OUT" data="group_out"/>
 <ie:param name="INSTANCE" data="instance_name"/>
 <ie:param name="MIMETYPE" data="mimetype"/>
 <ie:param name="PASSWD" data="dbpassword"/>
 <ie:param name="WHERE" data="where_clause"/>
</ie:webject>

Parameters

Required Select Optional

FILENAME CLASS BLOB_COUNT

INSTANCE WHERE CONNECTION_ATTEMPTS

MIMETYPE CONNECTION_ATTEMPT_INTERVAL

 DBUSER

 GROUP_OUT

 PASSWD

BLOB_COUNT
Specifies how many BLOBs to deliver to the webject. Specifying a value of 0
results in no BLOBs being delivered. Specifying a value of more than 0
results in up to that specified number of BLOBs being delivered. For
example, if this parameter is specified with a value of five (5), then no more
than five BLOBs will be delivered to the webject.

The default behavior for this parameter is that all remaining BLOBs are
delivered to the webject. This parameter is optional.

CLASS
Identifies the table name object containing the bulk attribute being returned.
If the value specified for FILENAME is not placed in single quotes, then this
parameter must be specified.

3-68 JDBC Adapter Guide

CONNECTION_ATTEMPTS
Defines the maximum number of times to attempt establishing a connection
to an adapter before returning an error. The default value is 1. This
parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPTS defines the maximum number of times to
iterate through the list of adapter instances.

CONNECTION_ATTEMPT_INTERVAL
Defines the amount of time, in seconds, to delay between connection
attempts. The default value is 60 seconds. This parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPT_INTERVAL defines the number of seconds to
wait between the attempts to iterate through the entire list of adapter
instances.

DBUSER
Specifies the name to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

FILENAME
Specifies the file to return. If placed in single quotes, the string typed here
will be used as the fully qualified name for the file data. If no quotes are
used, the string represents the attribute which contains the file path. If the
database needs to be queried, then CLASS and WHERE parameters become
required. This parameter is required.

GROUP_OUT
Identifies the group returned by the webject. This parameter is optional.

INSTANCE
Specifies the name of the adapter that executes the webject. Adapter names
are defined when the adapter is configured for use in your Info*Engine
environment. This parameter is required.

In order to provide the ability to connect to other adapters if a specific
adapter is not available, this parameter can be multi-valued. Info*Engine
attempts to connect to the adapters in the order given. If the first adapter
specified is not available, the next adapter listed is tried, and so on, until a
connection is made. If a connection cannot be established with any listed
adapter, an error is returned.

In conjunction with this parameter, you can include two other parameters,
CONNECTION_ATTEMPTS and CONNECTION_ATTEMPT_INTERVAL.

The Webject Library 3-69

MIMETYPE
Specifies the mime type of the file. If placed in single quotes, the string typed
here will be used as the mime type for the bulk data, otherwise this value
represents a column in the table. This parameter is required.

PASSWD
Specifies the password to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

WHERE
Specifies search criteria for the database object containing bulk data to
return. The value for this parameter is specified as an SQL formatted where
clause. If the value specified for FILENAME is not placed in single quotes,
then this parameter must be specified.

3-70 JDBC Adapter Guide

Example
The following example documents the SendBulkStream.jsp file, which is
located in the
<ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples directory.

This example uses the JSP useBean directive in order to display the image.
To understand this example you must be familiar with the JSP useBean
directive and its use. For further information about the API methods called
within the useBean directive, see the API documentation that is in the
following location:

<ie_dir>/codebase/infoengine/docs/apidocs

where <ie_dir> is the location where Info*Engine is installed.

In this example, the DownloadBulk.jsp file, located in the same examples
directory, provides the input form necessary for providing the appropriate
parameter values for this example and should be run to execute
SendBulkStream.jsp.

The JDBC Adapter Instance field of the input form should specify the
INSTANCE parameter value appropriate to your installation. The File
Name field specifies the full path name of the file which contains the bulk
data. The Mime Type field specifies the mime type of the file. When the form
is submitted, SendBulkStream.jsp is called. The data specified on the form
provides the parameter values for the webjects.

<%@page language="java" session="false"
errorPage="IEError.jsp"%>

<%@ taglib uri="http://www.ptc.com/infoengine/taglib/core"
prefix="ie" %>

<html>
<head>
<title> Bulk Download</title>
</head>
<BODY>
<H2> Download File</H2>
<form method="POST" action="SendBulkStream.jsp" >
<TABLE>
 <tr>
 <td align=right>
 JDBC Adapter Instance:
 </td>
 <td>
 <INPUT name="instance" type="text" size=50>
 </td>
 </tr>
 <tr>
 <td align=right>
 File Name:
</td>
<td>
 <INPUT name="filename" type="text" size=50>
 </td>
 </tr>

The Webject Library 3-71

<tr>
 <td align=right>
 MIME Type:
 </td>
 <td>
 <INPUT name="mimetype" type="text" size=50>
 </td>
 </tr>
 <tr>
 <td align="right">
 Name:
 </td>
 <td>
 <input name="name" type="text" size="50">
 </td>
 </tr>
 <tr>
 <td>
 </td>
 <td align=left>
 <INPUT name="submit" type="submit" value="Retrieve"
id=button>
 </td>
 </tr>
</table>
</form>
</body>
</html>

The file SendBulkStream.jsp that gets executed upon submitting the above
form is as follows:

<%@page language="java" errorPage="IEError.jsp"
import="java.util.*,com.infoengine.object.factory.*,com.infoeng
ine.SAK.*,com.infoengine.object.*" %>

<%@ taglib uri="http://www.ptc.com/infoengine/taglib/core"
prefix="ie"%>

<ie:getService varName="vdb"/>
<jsp:useBean id="qa" class="com.infoengine.SAK.ActionWebject">
<% out.clearBuffer();
 qa.setService(vdb);
 qa.setName("Send-Bulk-Stream");
boolean user_input_file_name = true;
boolean user_input_mime_type = false;

String file_name =
request.getParameter("filename");if(file_name != null &&
!file_name.equals("")){
file_name = file_name.trim();

if(!(file_name.startsWith("'") && file_name.endsWith("'"))){
user_input_file_name = false; }
}else{
 file_name ="FILENAME"; user_input_file_name =
false; }

3-72 JDBC Adapter Guide

 /* Fetch the MIME type from the request, so it could be used
for the response stream */

String mime_type = request.getParameter("mimetype");
if(mime_type != null && !mime_type.equals("")){
mime_type = mime_type.trim();

if(mime_type.startsWith("'") && mime_type.endsWith("'"))
 user_input_mime_type = true;
}else
mime_type = "MIMETYPE";
 qa.addParam("INSTANCE",request.getParameter("instance"));
 qa.addParam("DBUSER","dbuser_name");
 qa.addParam("PASSWD","dbuser_passwd");
 if(user_input_mime_type == false || user_input_file_name ==
false)
 {
 /* No value was input by the user for MIME Type and/or
File Name */
 String name = request.getParameter("name");
 name = "NAME='" + name + "'";
 /* The following webject fetches the values for MIME type
and file name from the database and stores them in group "temp"
*/
 %><ie:webject name="Query-Objects" type="OBJ">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
default="jdbcAdapter"/>
 <ie:param name="CLASS" data="BULKFILE"/>
 <%if(user_input_file_name ==
false){%>

 <ie:param name="ATTRIBUTE" data="<%=file_name%>"/>
 <%}%>
 <%if(user_input_mime_type == false){%>
 <ie:param name="ATTRIBUTE" data="<%=mime_type%>"/>
<%}%>
 <ie:param name="WHERE" data="<%=name%>"/>
 <ie:param name="GROUP_OUT" data="temp"/>
</ie:webject><%
 /* Fetch the MIME type and/or file name from the group
"temp" */
 IeGroup ie_group = (vdb.getCollection()).getGroup("temp");
 Group group = new Group(ie_group);
 Enumeration elements = group.getElements();
 Element elem = null;
 Att att1 = null, att2 = null;
 if(elements.hasMoreElements())
 {
 elem = (Element)elements.nextElement();
 att1 = elem.getAtt(mime_type);
 if(user_input_mime_type == false && att1 != null)
 {
 mime_type = (att1.getValue()).toString();
 mime_type = "'" + mime_type + "'";
 }
 att2 = elem.getAtt(file_name);
 if(user_input_file_name == false && att2 != null)
 {
 file_name = (att2.getValue()).toString();
 file_name = "'" + file_name + "'";
 }
 }
 }

The Webject Library 3-73

 qa.addParam("MIMETYPE", mime_type);
 qa.addParam("FILENAME", file_name);
 qa.addParam("GROUP_OUT","SendBlob");
 qa.setOutputStream(response.getWriter());
 /* Make sure the single quotes in mime_type do not get
passed to setContentType() */
 if(!mime_type.equals("") && mime_type != null)
 response.setContentType(mime_type.substring(1,
mime_type.length()-1));
 qa.invoke();
 response.getWriter().close();
%>
</jsp:useBean>

3-74 JDBC Adapter Guide

Send-Clob-Stream
Description

Sends any CLOB information from a database object as a stream.

Definition
CLOB (noun): An acronym for Character Large OBject. A CLOB column
stores single-byte fixed-width character objects, such as text documents. A
CLOB is an object stored in a database that cannot be interpreted within the
database itself.

Syntax
<ie:webject name="Send-Clob-Stream" type="ACT">
 <ie:param name="ATTRIBUTE" data="attribute_with_clob_data"/>
 <ie:param name="BLOB_COUNT" data="number_of_BLOBs"/>
 <ie:param name="CLASS" data="tablename"/>
 <ie:param name="CONNECTION_ATTEMPT_INTERVAL" data="interval"/>
 <ie:param name="CONNECTION_ATTEMPTS" data="attempts"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="GROUP_OUT" data="group"/>
 <ie:param name="INSTANCE" data="instance"/>
 <ie:param name="MIMETYPE" data="mimetype"/>
 <ie:param name="PASSWD" data="dbpassword"/>
 <ie:param name="WHERE" data="where_clause"/>
</ie:webject>

Parameters

Required Select Optional

ATTRIBUTE BLOB_COUNT

CLASS CONNECTION_ATTEMPTS

INSTANCE CONNECTION_ATTEMPT_INTERVAL

MIMETYPE DBUSER

WHERE GROUP_OUT

 PASSWD

The Webject Library 3-75

ATTRIBUTE
Specifies the attribute or column in the database table from which to return
the character data. This parameter is required.

BLOB_COUNT
Specifies how many BLOBs to deliver to the webject. Specifying a value of 0
results in no BLOBs being delivered. Specifying a value of more than 0
results in up to that specified number of BLOBs being delivered. For
example, if this parameter is specified with a value of five (5), then no more
than five BLOBs will be delivered to the webject.

The default behavior for this parameter is that all remaining BLOBs are
delivered to the webject. This parameter is optional.

CLASS
Identifies the name of the object containing the CLOB attribute being
returned. This parameter is required.

CONNECTION_ATTEMPTS
Defines the maximum number of times to attempt establishing a connection
to an adapter before returning an error. The default value is 1. This
parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPTS defines the maximum number of times to
iterate through the list of adapter instances.

CONNECTION_ATTEMPT_INTERVAL
Defines the amount of time, in seconds, to delay between connection
attempts. The default value is 60 seconds. This parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPT_INTERVAL defines the number of seconds to
wait between the attempts to iterate through the entire list of adapter
instances.

DBUSER
Specifies the name to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

GROUP_OUT
Identifies the group returned by the webject. This parameter is optional.

3-76 JDBC Adapter Guide

INSTANCE
Specifies the name of the adapter that executes the webject. Adapter names
are defined when the adapter is configured for use in your Info*Engine
environment. This parameter is required.

In order to provide the ability to connect to other adapters if a specific
adapter is not available, this parameter can be multi-valued. Info*Engine
attempts to connect to the adapters in the order given. If the first adapter
specified is not available, the next adapter listed is tried, and so on, until a
connection is made. If a connection cannot be established with any listed
adapter, an error is returned.

In conjunction with this parameter, you can include two other parameters,
CONNECTION_ATTEMPTS and CONNECTION_ATTEMPT_INTERVAL.

MIMETYPE
Describes the name of the attribute that has a mime type. If placed in single
quotes, the string typed here will be used as the mime type for the CLOB
data, otherwise this value represents a column in the table. This parameter
is required.

PASSWD
Specifies the password to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

WHERE
Specifies search criteria for the database object containing CLOB data to
return. The value for this parameter is specified as an SQL formatted where
clause. This parameter is required.

Example
The following example documents the SendClobStream.jsp file, which is
located in the
<ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples directory.

This example uses the JSP useBean directive in order to display the image.
To understand this example you must be familiar with the JSP useBean
directive and its use. For further information about the API methods called
within the useBean directive, see the API documentation that is in the
following location:

<ie_dir>/codebase/infoengine/docs/apidocs

where <ie_dir> is the location where Info*Engine is installed.

In this example, the DownloadClob.jsp file, located in the same examples
directory, provides the input form necessary for providing the appropriate
parameter values for this example and should be run to execute
SendClobStream.jsp.

The Webject Library 3-77

The JDBC Adapter Instance field of the input form specifies the
INSTANCE parameter value appropriate to your installation. The Name
field specifies the attribute containing CLOB data to be returned. The File
Name field specifies the name of the object containing the CLOB attribute
being returned. The Mime Type field specifies the name of the attribute that
has a mime type. See the MIMETYPE parameter description for further
details. When the form is submitted, SendClobStream.jsp is called. The data
specified on the form provides the parameter values for the webjects.

<%@page language="java" session="false"
 errorPage="IEError.jsp"%>
<%@ taglib uri="http://www.ptc.com/infoengine/taglib/core"
 prefix="ie" %>
<html>
<head>
<title> CLOB Download</title>
</head>
<BODY>
<H2> Download File</H2>
<form method="POST" action="SendClobStream.jsp" >
<TABLE>
 <tr>
 <td align=right>
 JDBC Adapter Instance:
 </td>
 <td>
 <INPUT name="instance" type="text" size=50>
 </td>
 </tr>
 <tr>
 <td align=right>
 Name:
 </td>
 <td>
 <INPUT name="name" type="text" size=50>
 </td>
 </tr>
 <tr>
 <td align=right>
 File Name :
 </td>
 <td>
 <INPUT name="filename" type="text" size=50>
 </td>
 </tr>
 <tr>
 <td align=right>
 Mime Type:
 </td>
 <td>
 <INPUT name="mimetype" type="text" size=50>
 </td>
 </tr>
 <tr>
 <td align=left>
 <INPUT name="submit" type="submit" value="Retrieve"
 id=button>
 </td>
 </tr>
</table>
</form>
</body>
</html>

3-78 JDBC Adapter Guide

The following SendClobStream.jsp file streams the specified plain.txt file
from the FILECONTENT column of the CLOBTEST table to the calling
application.

Note: To run this example on your own system, you need to replace the
values of the DBUSER and PASSWD parameters with values appropriate to
your installation.

The file SendClobStream.jsp that gets executed upon submitting the above
form is shown below:

<%@page language="java" errorPage="IEError.jsp"
import="java.util.*,com.infoengine.object.factory.*,com.infoeng
ine.SAK.*,com.infoengine.object.*" %>

<%@ taglib uri="http://www.ptc.com/infoengine/taglib/core"
prefix="ie"%>

<ie:getService varName="vdb"/>
<jsp:useBean id="qa" class="com.infoengine.SAK.ActionWebject">
<% qa.setService(vdb);
 qa.setName("Send-Clob-Stream");
 boolean user_input_file_name = true;
 boolean user_input_mime_type = false;
 String file_name = request.getParameter("filename");
 if(file_name != null){
 file_name = file_name.trim();
 if(!(file_name.startsWith("'")&& file_name.endsWith("'"))){
 user_input_file_name = false;
 }
 }else{
 file_name ="";
 user_input_file_name = false;
 }
 String mtype = request.getParameter("mimetype");
 if(mtype != null){
 mtype = mtype.trim();
 if(mtype.startsWith("'") && mtype.endsWith("'"))
 user_input_mime_type = true;
 }else
 mtype = "";
 StringBuffer name=new StringBuffer("NAME='");
 name.append(request.getParameter("name"));
 name.append("'");
 if(user_input_file_name == false || user_input_mime_type ==
false)
 {
 /* No value was input by the user for File Name and/or
MIME type; the following webject fetches these from the
database and stores in group "temp" */
 %><ie:webject name="Query-Objects" type="OBJ">
 <ie:param name="INSTANCE"
data="${@FORM[]instance[]}" default="jdbcAdapter"/>
 <ie:param name="CLASS" data="CLOBTEST"/>
 <%if(user_input_mime_type == false){%>
 <ie:param name="ATTRIBUTE" data="${@FORM[]mimetype[]}"/>
 <%}%>

 <%if(user_input_file_name == false){%>
 <ie:param name="ATTRIBUTE" data="${@FORM[]filename[]}"/>
 <%}%>
 <ie:param name="WHERE"
data="<%=name.toString()%>"/>

The Webject Library 3-79

 <ie:param name="GROUP_OUT" data="temp"/>
 </ie:webject><%

 /* Fetch the MIME type and/or file name from the group
"temp" */
 IeGroup ie_group = (vdb.getCollection()).getGroup("temp");
 Group group = new Group(ie_group);
 Enumeration elements = group.getElements();
 Element elem = null;
 Att att1 = null, att2 = null;
 if(elements.hasMoreElements())
 {
 elem = (Element)elements.nextElement();
 att1 = elem.getAtt(mtype);
 if(user_input_mime_type == false && att1 != null)
 {
 mtype = (att1.getValue()).toString();
 mtype = "'" + mtype + "'";
 }
 att2 = elem.getAtt(file_name);
 if(user_input_file_name == false && att2 != null)
 {
 file_name = (att2.getValue()).toString();
 }
 }
 }
 StringBuffer fname=new StringBuffer("filename='");
 fname.append(file_name);
 fname.append("'");
qa.addParam("INSTANCE",request.getParameter("instance"));
 qa.addParam("ATTRIBUTE","FILECONTENT");
 qa.addParam("DBUSER","dbuser_name");
 qa.addParam("PASSWD","dbuser_passwd");
 qa.addParam("CLASS","CLOBTEST");
 qa.addParam("WHERE",name.toString());
 qa.addParam("MIMETYPE",mtype);
 qa.addParam("FILENAME",file_name);
 qa.addParam("GROUP_OUT","SendClob");
 qa.setOutputStream(response.getWriter());
 response.addHeader("Content-
Disposition",fname.toString());
 /* Make sure the single quotes in mtype are not passed
to setContentType() */
 if(!mtype.equals("") && mtype != null)
 response.setContentType(mtype.substring(1,
mtype.length()-1));
 qa.invoke();
 response.getWriter().close();
%>
</jsp:useBean>

3-80 JDBC Adapter Guide

Transaction
Description

This webject may be used to start or end a database transaction, create a
savepoint, perform a database commit, or rollback the changes either wholly
or to a given savepoint within the transaction. Any of the above said actions
may be achieved through this webject, by simply providing the appropriate
webject parameters.

Syntax
<ie:webject name="Transaction" type="ACT">
 <ie:param name="INSTANCE" data="instance"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="PASSWD" data="dbuser_passwd"/>
 <ie:param name="BLOB_COUNT" data="number_of_BLOBs"/>
 <ie:param name="CONNECTION_ATTEMPT_INTERVAL" data="interval"/>
 <ie:param name="CONNECTION_ATTEMPTS" data="attempts"/>
 <ie:param name="ACTION" data="type_of_action"/>
 <ie:param name="SAVEPNTNAME" data="savepoint_name"/>
 <ie:param name="SESSION_ID" data="session_id_string"/>
 <ie:param name="GROUP_OUT" data="group_out"/>
</ie:webject>

NOTE: The parameter SAVEPNTNAME can be used only when the ACTION
parameter takes a value of "SAVEPOINT" or "ROLLBACK".

Parameters

Required Select Optional

INSTANCE SESSION_ID BLOB_COUNT

ACTION SAVEPNTNAME CONNECTION_ATTEMPTS

 GROUP_OUT CONNECTION_ATTEMPT_INTE
RVAL

 DBUSER

 PASSWD

The following sections describe the possible actions for the Transaction webject.

START
This is to begin a database transaction. This would be the first action to occur
in a task composed of a series of webjects participating in a given transaction.

INSTANCE, ACTION and GROUP_OUT are the required webject
parameters while the remaining ones are optional. These have been described
below:

The Webject Library 3-81

ACTION
Specifies the type of action associated with the given transaction. In order to
begin a database transaction, this must be set to "START". Specifying
multiple ACTION webject parameters within a given <ie:webject> element is
an error.

GROUP_OUT
Specifies the name of the group returned by the webject. A START
transaction webject stores the session ID in this group, which in turn would
be accessed by the subsequently executed webjects that participate in the
same transaction. It is therefore a required webject parameter.

SESSION_ID
This webject parameter is optional. If the user does not provide this
parameter, a session ID will be generated internally and stored in the output
group. However, if the user does provide this parameter, the specified value
will simply get stored in the output group.

Note:

1. The case associated with the value provided for the webject parameter
ACTION is unimportant. Thus, the value can be "START", "start", etc.

2. The webject will throw an exception if the value provided by the user for
the webject parameter SESSION_ID is an ID that is already being used
by some other concurrently executing webject.

3. Executing the webject for this action would result in a connection
instance being checked out from an existing pool of connections, which in
turn would be used for the given transaction.

COMMIT
This is to perform a database commit. Executing this webject would cause
any previously made changes to be saved permanently to the database.

INSTANCE, ACTION and SESSION_ID are the required webject parameters
while the remaining ones are optional. These have been described below:

ACTION
Specifies the type of action associated with the given transaction. In order to
perform a database commit, this must be set to "COMMIT". Specifying
multiple ACTION webject parameters within a given <ie:webject> element is
an error.

SESSION_ID
The webject uses this to fetch the database connection corresponding to the
given transaction and it is on this connection that a commit is performed. It
is therefore a required webject parameter.

The user may specify a value for this webject parameter as shown below:

<ie:param name="SESSION_ID" data="${<value>[]session_id[]}"/>

The above syntax makes use of dynamic parameter value substitution, where
<value> is the value provided by the user for the webject parameter

3-82 JDBC Adapter Guide

GROUP_OUT in the START transaction webject that was used to start the
given transaction.

Note:

1. The case associated with the value provided for the webject parameter
ACTION is unimportant. Thus, the value can be "COMMIT", "commit",
etc.

2. Executing the webject for this action would result in the database
connection corresponding to the given transaction to be released back into
a pool of connections. However, the session ID associated with the
transaction would still be intact and may be referenced by any of the
subsequently executed webjects that are participating in the same
transaction.

SAVEPOINT
This is to set a savepoint within a given transaction. Once a savepoint has
been created, the transaction can be rolled back to that savepoint without
affecting any of the changes that occurred prior to its creation.

INSTANCE, ACTION, SAVEPNTNAME and SESSION_ID are the required
webject parameters while the remaining ones are optional. These have been
described below:

ACTION
Specifies the type of action associated with the given transaction. In order to
create a savepoint within the transaction, this must be set to "SAVEPOINT".
Specifying multiple ACTION webject parameters within a given <ie:webject>
element is an error.

SAVEPNTNAME
Specifies the name of the savepoint instance to be created. This is a required
webject parameter.

SESSION_ID
The webject uses this to identify the given transaction and it is within this
transaction that the given savepoint is created. It is therefore a required
webject parameter.

The user may specify a value for this webject parameter as shown below:

<ie:param name="SESSION_ID" data="${<value>[]session_id[]}"/>

where <value> is the value provided by the user for the webject parameter
GROUP_OUT in the START transaction webject that was used to start the
given transaction.

Note:

1. The case associated with the value provided for the webject parameter
ACTION is unimportant. Thus, the value can be "SAVEPOINT",
"savepoint" etc.

The Webject Library 3-83

2. Savepoint creation is currently supported only for Oracle 9i. For any
other database type, an exception would be thrown upon executing the
webject for this action.

3. There are certain restrictions with regard to the value that can be
provided for the webject parameter SAVEPNTNAME. Thus, the first
character must be a letter and any of the following characters must either
be a letter or a digit or any of the characters '#', '$' or '_'. An exception
would be thrown upon violating any of these restrictions.

4. If the value provided for the webject parameter SAVEPNTNAME is the
name of a previously created savepoint instance that exists within the
same transaction, the currently created instance will replace the old
instance.

ROLLBACK
This is to rollback previously made changes either wholly, or to a given
savepoint within the transaction.

INSTANCE, ACTION and SESSION_ID are the required webject parameters
while the remaining ones are optional. These have been described below:

ACTION
Specifies the type of action associated with the given transaction. In order to
rollback any changes, this must be set to "ROLLBACK". Specifying multiple
ACTION webject parameters within a given <ie:webject> element is an error.

SAVEPNTNAME
Specifies the name of the savepoint to rollback to. This is an optional
parameter, since the user may choose to rollback either all of the changes
made during the given transaction (by not providing this parameter at all) or
only those changes made after the given savepoint was set within the
transaction.

SESSION_ID
The webject uses this to fetch the database connection corresponding to the
given transaction and it is on this connection that a rollback is performed. It
is therefore a required webject parameter.

The user may specify a value for this webject parameter as shown below:

<ie:param name="SESSION_ID" data="${<value>[]session_id[]}"/>

where <value> is the value provided by the user for the webject parameter
GROUP_OUT in the START transaction webject that was used to start the
given transaction.

Note:

1. The case associated with the value provided for the webject parameter
ACTION is unimportant. Thus, the value can be "ROLLBACK",
"rollback", etc.

2. Rollback to a savepoint is currently supported only for Oracle 9i. For any
other database type, an exception would be thrown upon executing the
webject for this action.

3-84 JDBC Adapter Guide

3. The value that can be provided for the webject parameter
SAVEPNTNAME has the same restrictions here as it does for the
SAVEPOINT action. Besides, it must correspond to an existing savepoint
instance within the given transaction.

END
This is to end a given transaction, so that previously made changes are saved
permanently to the database.

INSTANCE, ACTION and SESSION_ID are the required webject parameters
while the remaining ones are optional. These have been described below:

ACTION
Specifies the type of action associated with the given transaction. In order to
end the transaction, this must be set to "END". Specifying multiple ACTION
webject parameters within a given <ie:webject> element is an error.

SESSION_ID
The webject uses this to identify the given transaction. Once the transaction
has been identified, a database commit is performed, thereby ending the
transaction. It is therefore a required webject parameter.

The user may specify a value for this webject parameter as shown below:

<ie:param name="SESSION_ID" data="${<value>[]session_id[]}"/>

where <value> is the value provided by the user for the webject parameter
GROUP_OUT in the START transaction webject that was used to start the
given transaction.

The preceding sections describe only those webject parameters that are specific to various
actions. Besides these, there are certain webject parameters that are common to all actions and
these have been described in the following sections:

BLOB_COUNT
Specifies how many BLOBs to deliver to the webject. Specifying a value of 0
results in no BLOBs being delivered. Specifying a value of more than 0
results in up to that specified number of BLOBs being delivered. For
example, if this parameter is specified with a value of five (5), then no more
than five BLOBs will be delivered to the webject.

The default behavior for this parameter is that all remaining BLOBs are
delivered to the webject. This parameter is optional.

CONNECTION_ATTEMPTS
Defines the maximum number of times to attempt establishing a connection
to an adapter before returning an error. The default value is 1. This
parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPTS defines the maximum number of times to
iterate through the list of adapter instances.

The Webject Library 3-85

CONNECTION_ATTEMPT_INTERVAL
Defines the amount of time, in seconds, to delay between connection
attempts. The default value is 60 seconds. This parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPT_INTERVAL defines the number of seconds to
wait between the attempts to iterate through the entire list of adapter
instances.

DBUSER
Specifies the name to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

INSTANCE
Specifies the name of the adapter that executes the webject. Adapter names
are defined when the adapter is configured for use in your Info*Engine
environment. This parameter is required.

In order to provide the ability to connect to other adapters if a specific
adapter is not available, this parameter can be multi-valued. Info*Engine
attempts to connect to the adapters in the order given. If the first adapter
specified is not available, the next adapter listed is tried, and so on, until a
connection is made. If a connection cannot be established with any listed
adapter, an error is returned.

In conjunction with this parameter, you can include two other parameters,
CONNECTION_ATTEMPTS and CONNECTION_ATTEMPT_INTERVAL.

PASSWD
Specifies the password to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

3-86 JDBC Adapter Guide

Example
The following example documents the Transaction.jsp file, which is located in
the <ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples
directory. It illustrates how the Transaction webject may be used in a task to
effectively manage a database transaction.

<%@page language="java" session="false"
errorPage="IEError.jsp"%>
<%@taglib uri="http://www.ptc.com/infoengine/taglib/core"
prefix="ie"%>

<html>
<head><title>Transaction Management</title>
<BASE>
</head>
<body bgcolor="#AABBCC">
<h1>Transaction Management: </h1>
<h3>Illustrates the various transaction webjects.</h3>

<ie:unit>

 <ie:webject name="Transaction" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
default="jdbcAdapter"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="PASSWD" data="dbuser_passwd"/>
 <ie:param name="ACTION" data="START"/>
 <ie:param name="GROUP_OUT" data="session"/>
 </ie:webject>

 <ie:webject name="Do-SQL" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
default="jdbcAdapter"/>
 <ie:param name="SESSION_ID"
data="${session[]session_id[]}"/>
 <ie:param name="SQL" data="INSERT INTO EMP VALUES
(8000,'John','CLERK',7902,'11-Jan-1999',900,NULL,20)"/>
 <ie:param name="SQL" data="INSERT INTO EMP VALUES
(8001,'Jim','CLERK',7902,'21-Jun-1999',850,NULL,20)"/>
 <ie:param name="SQL" data="INSERT INTO EMP VALUES
(8002,'Jack','CLERK',7902,'27-Dec-1999',800,NULL,20)"/>
 <ie:param name="MODE" data="batch"/>
 <ie:param name="GROUP_OUT" data="DoSql"/>
 </ie:webject>

 <ie:webject name="Prepared-Batch-Update" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
default="jdbcAdapter"/>
 <ie:param name="SESSION_ID"
data="${session[]session_id[]}"/>
 <ie:param name="SQL" data="UPDATE EMP SET SAL = ?,
HIREDATE = ? WHERE EMPNO = ?"/>
 <ie:param name="DELIMITER" data="^"/>
 <ie:param name="PARAMTYPES" data="INTEGER^DATE^INTEGER"/>
 <ie:param name="PARAMVALUES" data="800^'12-Jan-
1999'^8000"/>
 <ie:param name="PARAMVALUES" data="750^'22-Jun-
1999'^8001"/>
 <ie:param name="PARAMVALUES" data="700^'28-Dec-
1999'^8002"/>
 <ie:param name="GROUP_OUT" data="PreparedBatchUpdate"/>
 </ie:webject>

The Webject Library 3-87

 <ie:webject name="Transaction" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
default="jdbcAdapter"/>
 <ie:param name="SESSION_ID"
data="${session[]session_id[]}"/>
 <ie:param name="ACTION" data="COMMIT"/>
 </ie:webject>

 <ie:webject name="Transaction" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
default="jdbcAdapter"/>
 <ie:param name="SESSION_ID"
data="${session[]session_id[]}"/>
 <ie:param name="ACTION" data="SAVEPOINT"/>
 <ie:param name="SAVEPNTNAME" data="svpnt#1"/>
 </ie:webject>

 <ie:webject name="Do-SQL" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
default="jdbcAdapter"/>
 <ie:param name="SESSION_ID"
data="${session[]session_id[]}"/>
 <ie:param name="SQL" data="INSERT INTO EMP VALUES
(8003,'Jerry','CLERK',7902,'20-DEC-1999',800,NULL,20)"/>
 <ie:param name="GROUP_OUT" data="DoSql"/>
 </ie:webject>

 <ie:webject name="Create-Object" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
default="jdbcAdapter"/>
 <ie:param name="SESSION_ID"
data="${session[]session_id[]}"/>
 <ie:param name="CLASS" data="EMP"/>
 <ie:param name="FIELD" data="EMPNO='1110'"/>
 <ie:param name="FIELD" data="ENAME='Herman'"/>
 <ie:param name="FIELD" data="JOB='ENGINEER'"/>
 <ie:param name="FIELD" data="MGR='7990'"/>
 <ie:param name="FIELD" data="HIREDATE='23-MAY-1999'"/>
 <ie:param name="FIELD" data="SAL='2200'"/>
 <ie:param name="FIELD" data="COMM=''"/>
 <ie:param name="FIELD" data="DEPTNO='40'"/>
 <ie:param name="GROUP_OUT" data="CreateObject"/>
 </ie:webject>

 <ie:webject name="Transaction" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
default="jdbcAdapter"/>
 <ie:param name="SESSION_ID"
data="${session[]session_id[]}"/>
 <ie:param name="ACTION" data="SAVEPOINT"/>
 <ie:param name="SAVEPNTNAME" data="svpnt#1"/>
 </ie:webject>

 <ie:webject name="Delete-Objects" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
default="jdbcAdapter"/>
 <ie:param name="SESSION_ID"
data="${session[]session_id[]}"/>
 <ie:param name="CLASS" data="${@FORM[]table[]}"

3-88 JDBC Adapter Guide

default="EMP"/>
 <ie:param name="WHERE" data="${@FORM[]where[]}"
default="ENAME='Herman'"/>
 <ie:param name="GROUP_OUT" data="DeleteObject"/>
 </ie:webject>

 <ie:webject name="Transaction" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
default="jdbcAdapter"/>
 <ie:param name="SESSION_ID"
data="${session[]session_id[]}"/>
 <ie:param name="ACTION" data="ROLLBACK"/>
 <ie:param name="SAVEPNTNAME" data="svpnt#1"/>
 </ie:webject>

 <ie:success>
 <ie:webject name="Create-Group" type="GRP">
 <ie:param name="ELEMENT" data="SUCCESS=success"/>
 <ie:param name="DELIMITER" data=":"/>
 <ie:param name="GROUP_OUT" data="success"/>
 </ie:webject>
 <ie:webject name="Transaction" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
default="jdbcAdapter"/>
 <ie:param name="SESSION_ID"
data="${session[]session_id[]}"/>
 <ie:param name="ACTION" data="END"/>
 </ie:webject>
 </ie:success>
 <ie:failure>
 <ie:webject name="Create-Group" type="GRP">
 <ie:param name="ELEMENT" data="FAILURE=failure"/>
 <ie:param name="DELIMITER" data=":"/>
 <ie:param name="GROUP_OUT" data="failure"/>
 </ie:webject>
 <ie:webject name="Transaction" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
default="jdbcAdapter"/>
 <ie:param name="SESSION_ID"
data="${session[]session_id[]}"/>
 <ie:param name="ACTION" data="ROLLBACK"/>
 </ie:webject>
 <ie:webject name="Throw-Exception" type="MGT"/>
 </ie:failure>
</ie:unit>
</body>
</html>

The example modifies the table EMP as described below:

A transaction is first started using the START Transaction webject. Some
three arbitrary rows are then inserted into the table using the Do-Sql
webject, which are then updated using the Prepared-Batch-Update webject.
The changes made are saved permanently into the database through the
COMMIT transaction webject. A savepoint called "svpnt#1" is then set
through the SAVEPOINT transaction webject.

Two more rows are inserted using the Do-Sql and Create-Object webjects and
a savepoint called "svpnt#1" is set once again, so that it replaces the
previously set savepoint. The row that was inserted using the Create-Object
webject is then deleted using the Delete-Objects webject. A rollback is then

The Webject Library 3-89

performed to the savepoint called "svpnt#1" through the ROLLBACK
transaction webject. This undoes the deletion caused by the Delete-Objects
webject.

Note the use of the success and failure blocks within a unit in the example, to
provide for success and failure processing. If all of the above described actions
went through fine, control would enter the success block; here, an output
group called "success" is created and the transaction is ended using the END
transaction webject. This saves the previously made changes permanently
into the database. On the other hand, if any of the actions had failed, control
would directly enter the failure block; here, an output group called "failure" is
created and the previously made changes are then rolled back wholly. This
way, it is ensured that the database is not left in an inconsistent state. Also,
note the use of a number of other JDBC Adapter webjects in the example - in
order for these to participate in a transaction, it is only required to use the
SESSION_ID webject parameter in each of these. This ensures that all such
webjects get executed as part of the same transaction. If the SESSION_ID
parameter is not provided for any of these other webjects, they would get
executed the old way, rather than as part of the given transaction.

3-90 JDBC Adapter Guide

Update-Objects
Description

Updates column values in a table.

Syntax
<ie:webject name="Update-Objects" type="ACT">
 <ie:param name="BLOB_COUNT" data="number_of_BLOBs"/>
 <ie:param name="CLASS" data="class"/>
 <ie:param name="CONNECTION_ATTEMPT_INTERVAL" data="interval"/>
 <ie:param name="CONNECTION_ATTEMPTS" data="attempts"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="FIELD" data="attributes"/>
 <ie:param name="GROUP_OUT" data="group_out"/>
 <ie:param name="INSTANCE" data="instance"/>
 <ie:param name="PASSWD" data="dbpassword"/>
 <ie:param name="WHERE" data="where_clause"/>
</ie:webject>

Parameters

Required Select Optional

CLASS BLOB_COUNT

FIELD CONNECTION_ATTEMPTS

INSTANCE CONNECTION_ATTEMPT_INTERVAL

WHERE DBUSER

 GROUP_OUT

 PASSWD

BLOB_COUNT
Specifies how many BLOBs to deliver to the webject. Specifying a value of 0
results in no BLOBs being delivered. Specifying a value of more than 0
results in up to that specified number of BLOBs being delivered. For
example, if this parameter is specified with a value of five (5), then no more
than five BLOBs will be delivered to the webject.

The default behavior for this parameter is that all remaining BLOBs are
delivered to the webject. This parameter is optional.

CLASS
Specifies the name of the table to update. This parameter is required.

The Webject Library 3-91

CONNECTION_ATTEMPTS
Defines the maximum number of times to attempt establishing a connection
to an adapter before returning an error. The default value is 1. This
parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPTS defines the maximum number of times to
iterate through the list of adapter instances.

CONNECTION_ATTEMPT_INTERVAL
Defines the amount of time, in seconds, to delay between connection
attempts. The default value is 60 seconds. This parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPT_INTERVAL defines the number of seconds to
wait between the attempts to iterate through the entire list of adapter
instances.

DBUSER
Specifies the name to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

FIELD
Specifies the attribute or table column to be updated. The value for this
parameter is specified in the following manner:

name='value'

where name is the attribute name, and value is the value to store in the
attribute. The name portion of the parameter value must exactly match the
attribute or column name. Multiple values can be specified for this
parameter. This parameter is required.

GROUP_OUT
Identifies the group returned by the webject. This parameter is optional.

INSTANCE
Specifies the name of the adapter that executes the webject. Adapter names
are defined when the adapter is configured for use in your Info*Engine
environment. This parameter is required.

In order to provide the ability to connect to other adapters if a specific
adapter is not available, this parameter can be multi-valued. Info*Engine
attempts to connect to the adapters in the order given. If the first adapter
specified is not available, the next adapter listed is tried, and so on, until a
connection is made. If a connection cannot be established with any listed
adapter, an error is returned.

In conjunction with this parameter, you can include two other parameters,
CONNECTION_ATTEMPTS and CONNECTION_ATTEMPT_INTERVAL.

3-92 JDBC Adapter Guide

PASSWD
Specifies the password to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

WHERE
Specifies search criteria for the database table row to update. The value for
this parameter is specified as an SQL formatted where clause. This
parameter is required.

The Webject Library 3-93

Example
The following example documents the UpdateObjects.jsp file, which is located
in the <ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples
directory.

In this example, the SAL field of the database record in the EMP table for the
employee named ALLEN is updated. The database is then queried and the
updated record is displayed using the Query-Objects and Display-Table
webjects respectively.

Note: To run this example on your own system, you need to replace the
values of the INSTANCE parameter with values appropriate to your
installation.

<%@page language="java" session="false"
 errorPage="IEError.jsp"%>
<%@taglib uri="http://www.ptc.com/infoengine/taglib/core"
 prefix="ie"%>
<html>
<head><title>Update-Objects Webject</title>
<BASE>
</head>
<body>
<h1>Update-Objects Webject: </h1>
<h3>Updates column values in a table</h3>

<ie:webject name="Update-Objects" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
 default="jdbcAdapter"/>
 <ie:param name="CLASS" data="EMP"/>
 <ie:param name="WHERE" data="${@FORM[]where[]}"
 default="ENAME='ALLEN'"/>
 <ie:param name="FIELD" data="sal='3700'"/>
 <ie:param name="GROUP_OUT" data="update"/>
</ie:webject>

<ie:webject name="Query-Objects" type="OBJ">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
 default="jdbcAdapter"/>
 <ie:param name="CLASS" data="EMP"/>
 <ie:param name="WHERE" data="()"/>
 <ie:param name="GROUP_OUT" data="emp"/>
</ie:webject>

<ie:webject name="Display-Table" type="DSP"/>

</body>
</html>

3-94 JDBC Adapter Guide

Validate-User
Description

Validates the identity of the SQL-type database user.

Syntax
<ie:webject name="Validate-User" type="ACT">
 <ie:param name="BLOB_COUNT" data="number_of_BLOBs"/>
 <ie:param name="CONNECTION_ATTEMPT_INTERVAL" data="interval"/>
 <ie:param name="CONNECTION_ATTEMPTS" data="attempts"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="GROUP_OUT" data="group_out"/>
 <ie:param name="INSTANCE" data="instance"/>
 <ie:param name="PASSWD" data="dbpassword"/>
</ie:webject>

Parameters

Required Select Optional

INSTANCE BLOB_COUNT

 CONNECTION_ATTEMPTS

 CONNECTION_ATTEMPT_INTERVAL

 DBUSER

 GROUP_OUT

 PASSWD

BLOB_COUNT
Specifies how many BLOBs to deliver to the webject. Specifying a value of 0
results in no BLOBs being delivered. Specifying a value of more than 0
results in up to that specified number of BLOBs being delivered. For
example, if this parameter is specified with a value of five (5), then no more
than five BLOBs will be delivered to the webject.

The default behavior for this parameter is that all remaining BLOBs are
delivered to the webject. This parameter is optional.

CONNECTION_ATTEMPTS
Defines the maximum number of times to attempt establishing a connection
to an adapter before returning an error. The default value is 1. This
parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPTS defines the maximum number of times to
iterate through the list of adapter instances.

The Webject Library 3-95

CONNECTION_ATTEMPT_INTERVAL
Defines the amount of time, in seconds, to delay between connection
attempts. The default value is 60 seconds. This parameter is optional.

If multiple INSTANCE parameter values are specified, the value of
CONNECTION_ATTEMPT_INTERVAL defines the number of seconds to
wait between the attempts to iterate through the entire list of adapter
instances.

DBUSER
Specifies the name to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

GROUP_OUT
Identifies the group returned by the webject. This parameter is optional.

INSTANCE
Specifies the name of the adapter that executes the webject. Adapter names
are defined when the adapter is configured for use in your Info*Engine
environment. This parameter is required.

In order to provide the ability to connect to other adapters if a specific
adapter is not available, this parameter can be multi-valued. Info*Engine
attempts to connect to the adapters in the order given. If the first adapter
specified is not available, the next adapter listed is tried, and so on, until a
connection is made. If a connection cannot be established with any listed
adapter, an error is returned.

In conjunction with this parameter, you can include two other parameters,
CONNECTION_ATTEMPTS and CONNECTION_ATTEMPT_INTERVAL.

PASSWD
Specifies the password to use when logging in to the data repository. If this
parameter is specified in this webject, the webject value takes precedence
over any value specified in the credentials mapping settings or in the adapter
LDAP entry. If this parameter is not specified here, it must be specified in
the credentials mapping settings or in the adapter LDAP entry. For more
information about credentials mapping, see the Info*Engine User's Guide.

3-96 JDBC Adapter Guide

Example
The following example documents the ValidateUser.jsp file, which is located
in the <ie_dir>/codebase/infoengine/jsp/examples/JDBCAdapter/examples
directory.

In this example, the database user is validated, and the output of the
Validate-User webject is displayed using the Display-Xml webject.

Note: To run this example on your own system, you need to replace the
values of the INSTANCE, DBUSER and PASSWD parameters with values
appropriate to your installation.

<%@page language="java" session="false"
 errorPage="IEError.jsp"%>
<%@taglib uri="http://www.ptc.com/infoengine/taglib/core"
 prefix="ie"%>

<html>
<head><title>Validate-User Webject</title>
<BASE>
</head>
<body>

<h1>Validate-User Webject: </h1>
<h3>Validate the identity of the database user</h3>

<ie:webject name="Validate-User" type="ACT">
 <ie:param name="INSTANCE" data="${@FORM[]instance[]}"
 default="jdbcAdapter"/>
 <ie:param name="DBUSER" data="dbuser_name"/>
 <ie:param name="PASSWD" data="dbuser_passwd"/>
 <ie:param name="GROUP_OUT" data="emp"/>
</ie:webject>

<ie:webject name="Display-Xml" type="DSP"/>

</body>
</html>

	Contents
	Change Record
	About This Guide
	Related Documentation
	Technical Support
	Documentation for PTC Products
	Comments
	Documentation Conventions

	Info*Engine Architecture
	Identifying the Info*Engine Components
	Identifying Basic Configurations
	Interacting with Info*Engine
	Using a Custom Java Application
	Using a Web Server to Process Info*Engine Requests
	Making E-Mail Requests to Info*Engine

	Managing the Execution of Info*Engine Tasks
	Starting and Locating Info*Engine Components
	Setting Up Connections Through Adapters
	Using In-Process Adapters and Gateways
	Using Out-of-Process Adapters and Gateways

	Installing and Configuring the Adapter
	Installation Overview
	Before You Begin an Adapter Installation
	Installing and Configuring the JDBC Adapter
	Installation and Configuration for Info*Engine on the Same Host
	Installation and Configuration for Info*Engine on a Different Host
	Verification

	Creating the JDBC Adapter LDAP Entry
	Using the Adapter In Process
	Using the Adapter Out of Process

	Sample Start File Contents
	Sample Windows Start File Contents
	Sample UNIX Start File Contents
	ie.properties Location and Contents
	Example Naming Service Launch Property

	Naming the Adapter in Webject INSTANCE Parameters
	JDBC Adapter Properties
	JDBC Adapter Logging Capabilities
	In-process Adapter Logging Capabilities
	Out-of-process Adapter Logging Capabilities

	The Webject Library
	Webject Library Overview
	Processing BLOBs
	Running the Webject Examples
	Batch-Execute-Procedure
	Create-Object
	Delete-Objects
	Describe-Attributes
	Do-SQL
	Execute-Procedure
	Prepared-Batch-Update
	Put-Blob-Stream
	Put-Bulk-Stream
	Put-Clob-Stream
	Query-Attributes
	Query-Objects
	Send-Blob-Stream
	Send-Bulk-Stream
	Send-Clob-Stream
	Transaction
	Update-Objects
	Validate-User

